symmetries and maxwell points in the plate ball problem
play

Symmetries and Maxwell points in the plate-ball problem and other - PowerPoint PPT Presentation

Symmetries and Maxwell points in the plate-ball problem and other invariant optimal control problems on Lie groups governed by the pendulum Yuri L. Sachkov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia


  1. Symmetries and Maxwell points in the plate-ball problem and other invariant optimal control problems on Lie groups governed by the pendulum Yuri L. Sachkov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia sachkov@sys.botik.ru Workshop on Nonlinear Control and Singularities Toulon, October 24 – 28, 2010

  2. The plate-ball problem Rolling of sphere on plane without slipping or twisting Given: A , B ∈ R 2 , frames ( a 1 , a 2 , a 3 ) , ( b 1 , b 2 , b 3 ) in R 3 . Find: γ ( t ) ∈ R 2 , t ∈ [ 0 , t 1 ] , — the shortest curve s.t.: γ ( 0 ) = A , γ ( t 1 ) = B , by rolling along γ ( t ) , orientation of the sphere transfers from ( a 1 , a 2 , a 3 ) to ( b 1 , b 2 , b 3 ) .

  3. State and control variables • Contact point ( x , y ) ∈ R 2 • Orientation of sphere R : a i �→ e i , i = 1 , 2 , 3, R ∈ SO ( 3 ) • State of the system Q = ( x , y , R ) ∈ R 2 × SO ( 3 ) = M • Boundary conditions Q ( 0 ) = Q 0 , Q ( t 1 ) = Q 1 • Controls u 1 = u / 2, u 2 = v / 2 • Cost functional � t 1 � t 1 � � x 2 + ˙ y 2 dt = u 2 1 + u 2 l ( γ ) = ˙ 2 dt → min 0 0

  4. Control system ( x , y ) ∈ R 2 , ( u 1 , u 2 ) ∈ R 2 , x = u 1 , ˙ y = u 2 , ˙   0 − ω 3 ω 2 ˙  ,  R ∈ SO ( 3 ) , − ω 1 R = R Ω , Ω = ω 3 0 − ω 2 ω 1 0   ω 1   angular velocity vector. ω = ω 2 ω 3 No twisting ⇒ ω 3 = 0. No slipping ⇒ ω 1 = u 2 , ω 2 = − u 1 .   0 0 − u 1   − u 2 Ω = 0 0 u 1 u 2 0

  5. History of the problem 1894 H. Hertz: rolling sphere as a nonholonomic mechanical system. 1983 J.M. Hammersley: statement of the plate-ball problem. 1986 A.M. Arthur, G.R.Walsh: integrability of Hamiltonian system of PMP in quadratures. 1990 Z. Li, E. Canny: complete controllability of the control system. 1993 V. Jurdjevic: - projections of extremal curves ( x ( t ) , y ( t )) — Euler elasticae, - description of qualitative types of extremal trajectories, - quadratures for evolution of Euler angles along extremal trajectories.

  6. New results • Parameterization of extremal trajectories • Continuous and discrete symmetries • Fixed points of symmetries (Maxwell points) • Necessary optimality conditions • Global structure of the exponential mapping • Asymptotics of extremal trajectories and limit behavior of Maxwell points for sphere rolling along sinusoids of small amplitude (Next talk by Alexey Mashtakov)

  7. Existence of solutions • Left-invariant sub-Riemannian problem: ˙ ( u 1 , u 2 ) ∈ R 2 , Q = u 1 X 1 ( Q ) + u 2 X 2 ( Q ) , Q ∈ M = R 2 × SO ( 3 ) , Q ( 0 ) = Q 0 , Q ( t 1 ) = Q 1 , � t 1 � u 2 1 + u 2 l = 2 dt → min . 0 • Complete controllability by Rashevskii-Chow theorem: span Q ( X 1 , X 2 , X 3 , X 4 , X 5 ) = T Q M ∀ Q ∈ M , X 3 = [ X 1 , X 2 ] , X 4 = [ X 1 , X 3 ] , X 5 = [ X 2 , X 3 ] . • Filippov’s theorem: ∀ Q 0 , Q 1 ∈ M optimal trajectory exists. • Q 0 = ( 0 , 0 , Id ) ∈ R 2 × SO ( 3 ) .

  8. Pontryagin maximum principle • Abnormal extremal trajectories: rolling of sphere along straight lines. • Normal extremals: ˙ c = − r sin θ, θ = c , ˙ α = ˙ ˙ r = 0 , (1) x = cos ( θ + α ) , ˙ y = sin ( θ + α ) , ˙ (2) ˙ R = R ( sin ( θ + α ) A 1 − cos ( θ + α ) A 2 ) ,     0 0 0 0 0 1   ,   , A 1 = 0 0 − 1 A 2 = 0 0 0 0 1 0 − 1 0 0   0 − 1 0   . A 3 = [ A 1 , A 2 ] = 1 0 0 0 0 0 ( 1 ) mathematical pendulum, ( 2 ) Euler elasticae.

  9. Mathematical pendulum ˙ θ = c , ˙ c = − r sin θ s ❙ ❙ L θ ❙ ❙ m s ❄ mg • λ = ( θ, c , r ) ∈ C = { θ ∈ S 1 , c ∈ R , r ≥ 0 } , • Energy E = c 2 / 2 − r cos θ = const ∈ [ − r , + ∞ ) , • r = g / L ≥ 0.

  10. Stratificaion of the phase cylinder C of pendulum C = ∪ 7 i = 1 C i , C i ∩ C j = ∅ , i � = j c 3 C 1 = { λ ∈ C | E ∈ ( − r , r ) , r > 0 } , C 2 C 3 C 2 = { λ ∈ C | E ∈ ( r , + ∞ ) , r > 0 } , ❥ 2 ❘ ❅ C 3 = { λ ∈ C | E = r > 0 , c � = 0 } , C 1 1 C 5 C 4 = { λ ∈ C | E = − r , r > 0 } , ☛ ✁ θ -3 -2 -1 1 2 3 − π ■ ❅ π C 5 = { λ ∈ C | E = r > 0 , c = 0 } , C 4 -1 C 6 = { λ ∈ C | r = 0 , c � = 0 } , ❨ � ✒ C 7 = { λ ∈ C | r = 0 , c = 0 } . -2 C 3 C 2 -3

  11. Euler elasticae ˙ x = cos ( θ + α ) , ˙ y = sin ( θ + α ) C 1 (oscillations of pendulum): inflectional elasticae 3.5 3 3.5 3 2.5 3 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 1 2 3 4 -3 -2 -1 0 C 2 (rotations of pendulum): non-inflectional elasticae 1.2 1 0.8 0.6 0.4 0.2 0 -2 -1.5 -1 -0.5 0 0.5

  12. Euler elasticae ˙ x = cos ( θ + α ) , ˙ y = sin ( θ + α ) C 3 (separatrix motions of penulum): critical elasticae 2 1.5 1 0.5 0 -2 -1 0 1 2 C 4 , C 5 , C 7 (equilibria of pendulum): straight lines C 6 (uniform rotation of pendulum under zero gravity): circles

  13. Integration of normal Hamiltonian system of PMP ˙ θ = c , c = − r sin θ, ˙ x = cos ( θ + α ) , ˙ y = sin ( θ + α ) , ˙ ˙ R = R ( sin ( θ + α ) A 1 − cos ( θ + α ) A 2 ) . • θ t , c t , x t , y t : Jacobi’s functions cn, sn, dn, E, cn ( u , k ) = cos ( am ( u , k )) , sn ( u , k ) = sin ( am ( u , k )) , � ϕ dt ϕ = am ( u , k ) ⇐ ⇒ u = � = F ( ϕ, k ) . 1 − k 2 sin 2 t 0 • R ( t ) = e ( α − ϕ 0 3 ) A 3 e − ϕ 0 2 A 2 e ϕ 1 ( t ) A 3 e ϕ 2 ( t ) A 2 e ( ϕ 3 ( t ) − α ) A 3 , ϕ i ( t ) : Jacobi’s functions + elliptic integral of the 3-rd kind � u dt Π( n , u , k ) = � . ( 1 − n sin 2 t ) 1 − k 2 sin 2 t 0

  14. Parameterization of trajectories of oscillating pendulum and inflectional Euler elasticae ( ϕ, k ) — coordinates rectifying the flow of pendulum , ϕ t = ϕ + t , sin ( θ t / 2 ) = k sn ( √ r ϕ t , k ) , cos ( θ t / 2 ) = dn ( √ r ϕ t , k ) , c t = 2 k √ r cn ( √ r ϕ t , k ) , x t = ¯ x t cos α − ¯ y t sin α, y t = ¯ x t sin α + ¯ y t cos α, x t = ( 2 ( E ( √ r ϕ t , k ) − E ( √ r ϕ, k )) − √ rt ) / √ r , ¯ y t = 2 k ( cn ( √ r ϕ, k ) − cn ( √ r ϕ t , k )) / √ r , ¯

  15. Parameterization of the matrix of rotation for the case of oscillating pendulum � √ √ M − c 2 cos ϕ 2 ( t ) = c t / M , sin ϕ 2 ( t ) = ± t / M , � M − c 2 cos ϕ 3 ( t ) = ∓ sin θ t / t , � M − c 2 sin ϕ 3 ( t ) = ± ( r − cos θ t ) / t , √ √ 2 √ r ( 1 − r )(Π( l , am ( √ r ϕ t , k ) , k ) M M ( 1 + r ) ϕ 1 ( t ) = 2 t + − Π( l , am ( √ r ϕ, k ) , k )) , 4 k 2 r M = 1 + r 2 + 2 E , l = − ( 1 − r ) 2 .

  16. Optimality of extremal trajectories • Short arcs of extremal trajectories Q ( s ) are optimal • Cut time along Q ( s ) : t cut = sup { t > 0 | Q ( s ) , s ∈ [ 0 , t ] , is optimal } . • Maxwell time: ∃ ˜ Q ( 0 ) = ˜ Q ( s ) �≡ Q ( s ) , Q ( 0 ) = Q 0 , Q ( t ) = ˜ Q ( t ) Maxwell point , t = t Max Maxwell time . • Upper bound on cut time: t cut ≤ t Max .

  17. Rotations Φ β , β ∈ S 1 ( θ, c , r , α ) �→ ( θ, c , r , α + β ) , � x s � cos β � � x s � � − sin β �→ , y s sin β cos β y s R s �→ e β A 3 R s e − β A 3 .

  18. Reflections ε i c ( x s , y s ) ✒ γ 2 γ ✛ ✯ ❥ ✑ ε 2 ✑ ✑ ✑ ✑ p c θ ✑ ✑ ε 3 ε 1 ✑ ✑ ❄ ✰ ✑ ✙ ❨ ( x 1 s , y 1 s ) ✒ γ 3 γ 1 ε 1 : ( θ s , c s ) �→ ( θ t − s , − c t − s ) , s ∈ [ 0 , t ] ( x s , y s ) �→ ( x 1 s , y 1 s ) = ( x t − s − x t , y t − s − y t ) R s �→ ( R t ) − 1 R t − s

  19. Reflections ε i ( x s , y s ) ( x s , y s ) ✲ ✯ ( x 2 s , y 2 s ) ✯ l ✯ l ⊥ ( x 3 s , y 3 s ) ε 2 : ( θ s , c s ) �→ ( − θ t − s , c t − s ) , s ∈ [ 0 , t ] ( x s , y s ) �→ ( x 2 s , y 2 s ) = ( x t − s − x t , y t − y t − s ) R s �→ I 2 ( R t ) − 1 R t − s I 2 , I 2 = e π A 2 . ε 3 : ( θ s , c s ) �→ ( − θ s , − c s ) , s ∈ [ 0 , t ] ( x s , y s ) �→ ( x 3 s , y 3 s ) = ( x s , − y s ) R s �→ I 2 R s I 2 .

  20. � � � � � � Exponential mapping and its symmetries • Group of symmetries G = � Φ β , ε 1 , ε 2 , ε 3 � = { Φ β , Φ β ◦ ε i | β ∈ S 1 , i = 1 , 2 , 3 } • Exponential mapping Exp ( λ, s ) = Q s = ( x s , y s , R s ) ∈ M = R 2 × SO ( 3 ) , λ = ( θ, c , α, r ) ∈ C , s > 0 . • Symmetries of exponential mapping Exp Exp C × R + ( λ, t ) � Q t M � � ε i ◦ Φ β ε i ◦ Φ β ε i ◦ Φ β ε i ◦ Φ β Exp � M ( λ i ,β , t ) � Exp � Q i ,β C × R + t

  21. Maxwell sets corresponding to reflections • MAX i = { ( λ, t ) | ∃ β ∈ S 1 : λ i ,β � = λ, Q t = Q i ,β t } , i = 1 , 2 , 3. • Necessary optimality conditions: ( λ, t ) ∈ MAX i ⇒ Q s = Exp ( λ, s ) not optimal for s > t , t cut ( λ ) ≤ t .

  22. Representation of rotations in R 3 by quaternions • H = { q = q 0 + iq 1 + jq 2 + kq 3 | q 0 , . . . , q 3 ∈ R } • S 3 = { q ∈ H || q | 2 = q 2 0 + q 2 1 + q 2 2 + q 2 3 = 1 } • I = { q ∈ H | Re q = q 0 = 0 } • q ∈ S 3 ⇒ R q ( a ) = qaq − 1 , R q ∈ SO ( 3 ) ∼ a ∈ I , = SO ( I ) • lift of the system ˙ R = R Ω from SO ( 3 ) to S 3 :   q 0 = 1 2 ( q 2 u 1 − q 1 u 2 ) , ˙     q 1 = 1 ˙ 2 ( q 3 u 1 + q 0 u 2 ) , q ∈ S 3 , ( u 1 , u 2 ) ∈ R 2 , q 2 = 1  ˙ 2 ( − q 0 u 1 + q 3 u 2 ) ,     q 3 = 1 ˙ 2 ( − q 1 u 1 − q 2 u 2 ) , q ( 0 ) = 1 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend