schwinger dyson equations and ward identities in nc qft
play

Schwinger-Dyson equations and Ward identities in NC QFT on the - PowerPoint PPT Presentation

sts srstt str Schwinger-Dyson equations and Ward identities in NC QFT on the example of scalar models


  1. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät ▼ü♥st❡r Schwinger-Dyson equations and Ward identities in NC QFT on the example of scalar models ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r Alexander Hock

  2. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 2 /18 ▼ü♥st❡r Noncommutative space (Moyal) with a noncommutative product ( f ⋆ g )( x ) � = ( g ⋆ f )( x ) for f , g ∈ S ( R 2 ) The vector space of Schwarz functions has a matrix basis → "dynamical" matrix model Schwinger-Dyson equations + Ward-Takahashi identities → closed integral equation (for φ 3 D and φ 4 D in the large V , N limit) ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r φ 3 was solved for D = 2 , 4 , 6 by Grosse, Sako, Wulkenhaar (’17,’18) φ 4 was solved for D = 2 by Panzer, Wulkenhaar (two weeks ago) φ 3 and φ 4 are in the same class of models Alexander Hock

  3. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 3 /18 ▼ü♥st❡r Example φ 3 2 The action is   N N N H nm φ nn + λ � � �  , S [ φ ] = V 2 φ nm φ mn + κ φ nm φ ml φ ln )  3 n , m =0 n =0 n , m , l =0 V + µ 2 where φ Hermitian matrix, H nm = E n + E m , E m = m 2 energy distribution, V deformation parameter of the Moyal plane and κ ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ renormalization parameter. ❲❲❯▼ü♥st❡r � D φ exp � � , φ nm ↔ 1 ∂ Z [ J ] := − S [ φ ] + V � n , m J nm φ mn ∂ J mn V Z [ J ] Z [0] ≈ 1 + V � n G | n | J nn � � � � V 2 V 2 G | n | G | m | + 1 + � 2 G | nm | J nm J mn + 2 G | n | m | J nn J mm + .. n , m Alexander Hock

  4. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 4 /18 ▼ü♥st❡r Schwinger-Dyson equation + Ward-Takahashi identity N � � G p = 1 − κ − λ G pm − λ � V 2 G p | p − λ G 2 p H pp V m =0 & � � 1 + λ G p 1 − G p 2 1 G p 1 p 2 = E p 1 − E p 2 H p 1 p 2 ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ Ward identity: Z should be invariant under φ → U φ U † , U ∈ U ( N ) ❲❲❯▼ü♥st❡r ∂ 2 � � � N � N ∂ ∂ V ∂ J nk ∂ J km Z [ J ] = ∂ J km − J mk Z [ J ] J kn k =0 k =0 ( E n − E m ) ∂ J nk Limit V , N → ∞ with N V = Λ 2 � Λ 2 lim 1 � N m =0 f ( m f ( x ) with x = m V ) = 0 V V → closed integral equations Alexander Hock

  5. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 5 /18 ▼ü♥st❡r 3-colour scalar model in 2D 3 scalar fields φ a for a ∈ { 1 , 2 , 3 } with the same energy distribution, where φ a is a Hermitian matrix. The action is definite 1   3 N 3 N H nm mn + λ � � � � 2 φ a nm φ a σ abc φ a nm φ b ml φ c S [ φ ] = V  ,  ln 3 a =1 n , m =0 a , b , c =1 n , m , l =0 ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ where H nm = E n + E m , E n = µ 2 2 + n ❲❲❯▼ü♥st❡r V , σ abc = | ε abc | and V as deformation parameter of the Moyal space. � �� 3 a =1 D φ a � � � − S [ φ ] + V � 3 � N n , m =0 J a nm φ a Z [ J ] := exp a =1 mn nm ↔ 1 ∂ φ a ∂ J a V mn 1 arXiv:1804.06075 with R. Wulkenhaar Alexander Hock

  6. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 6 /18 ▼ü♥st❡r Correlation functions are expansion coefficients of log Z [ J ] Z [0] . The first terms are 3 N Z [ J ] � V mn + 1 � 2 G a | a � � 2 G aa | nm | J a nm J a | n | m | J a nn J a Z [0] =: 1 + mm a =1 n , m =0 3 N � ln + 1 V 2 G a | bc � � 3 G abc | nml | J a nm J b ml J c | n | ml | J a nn J b ml J c + σ abc lm ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ a , b , c =1 n , m , l =0 ❲❲❯▼ü♥st❡r � + 1 6 V G a | b | c | n | m | l | J a nn J b mm J c + ... ll Alexander Hock

  7. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 7 /18 ▼ü♥st❡r Example of a Schwinger-Dyson equation 3 1 λ G aa � p 1 p 2 = + σ abc 1 + p 1 + p 2 H p 1 p 2 b , c =1 � 1 N p 1 p 2 n + 1 p 1 | p 1 p 2 + 1 p 2 | p 1 p 2 + δ p 1 p 2 � V 2 G a | bc V 2 G a | bc V 3 G a | b | c � G abc × . p 1 | p 1 | p 2 V ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ n =0 ❲❲❯▼ü♥st❡r One gets a tower of D-S equations. Try to decouple the tower in the large N , V limit with Ward-Takahashi identities Alexander Hock

  8. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 8 /18 ▼ü♥st❡r Ward-Takahashi identities � � � 3 � N mn + λ � 3 � N H nm 2 φ a nm φ a n , m , l =0 σ abc φ a nm φ b ml φ c S [ φ ] = V a =1 n , m =0 a , b , c =1 3 ln The identity is obtained by the invariance of Z [ J ] under U ( N ) transformation ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r Alexander Hock

  9. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 8 /18 ▼ü♥st❡r Ward-Takahashi identities � � � 3 � N mn + λ � 3 � N H nm 2 φ a nm φ a n , m , l =0 σ abc φ a nm φ b ml φ c S [ φ ] = V a =1 n , m =0 a , b , c =1 3 ln The identity is obtained by the invariance of Z [ J ] under U ( N ) transformation ( φ → U φ U † ). For the φ 3 / 4 model ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ D ❲❲❯▼ü♥st❡r N � �� ∂ 2 V � ∂ ∂ � − − J mk Z [ J ] = 0 . J kn ( E n − E m ) ∂ J nk ∂ J km ∂ J km ∂ J nk k =0 Alexander Hock

  10. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 9 /18 ▼ü♥st❡r Ward-Takahashi identities � � � 3 � N mn + λ � 3 � N H nm 2 φ a nm φ a n , m , l =0 σ abc φ a nm φ b ml φ c S [ φ ] = V a =1 n , m =0 a , b , c =1 ln 3 The identity is obtained by the invariance of Z [ J ] under U ( N ) transformation ( φ a → U φ a U † , ∀ a ). Simultaneous transformation of all 3 fields ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r 3 N � ∂ 2 � �� V ∂ ∂ � � J a − J a − Z [ J ] = 0 . kn mk ∂ J a nk ∂ J a ∂ J a ∂ J a ( E n − E m ) km km nk a =1 k =0 Alexander Hock

  11. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 10 /18 ▼ü♥st❡r Ward-Takahashi identities � � � 3 � N mn + λ � 3 � N H nm 2 φ a nm φ a n , m , l =0 σ abc φ a nm φ b ml φ c S [ φ ] = V a =1 n , m =0 a , b , c =1 3 ln The identity is obtained by the invariance of Z [ J ] under U ( N ) transformation ( φ a → U φ a U † , fix a ). Transformation of one field ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ N N ∂ 2 � � V ∂ ∂ � � J a − J a + ❲❲❯▼ü♥st❡r mk kn ∂ J a nk ∂ J a ∂ J a ∂ J a E n − E m km nk km k =0 k =0 N 3 � � ∂ 3 ∂ 3 λ � � = σ acd − σ acd V ( E n − E m ) ∂ J a nk ∂ J c kl ∂ J d ∂ J c nk ∂ J d kl ∂ J a k , l =0 c , d =1 lm lm Alexander Hock

  12. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 11 /18 ▼ü♥st❡r Ward-Takahashi identities � � � 3 � N mn + λ � 3 � N H nm 2 φ a nm φ a n , m , l =0 σ abc φ a nm φ b ml φ c S [ φ ] = V a =1 n , m =0 a , b , c =1 3 ln The identity is obtained by the invariance of Z [ J ] under U ( N ) transformation ( φ a → φ ′ a ( φ a , φ b ) , φ b → φ ′ b ( φ b , φ a )). Mixed Transformation ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ N N ∂ 2 � � V ∂ ∂ � � J b − J a + ❲❲❯▼ü♥st❡r mk kn ∂ J a nk ∂ J b ∂ J a ∂ J b E n − E m km nk km k =0 k =0 N 3 � � ∂ 3 ∂ 3 λ � � = σ bcd − σ acd V ( E n − E m ) ∂ J a nk ∂ J c kl ∂ J d ∂ J c nk ∂ J d kl ∂ J b k , l =0 c , d =1 lm lm Alexander Hock

  13. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 12 /18 ▼ü♥st❡r ◮ Using the Ward identities twice ◮ Performing the large V , N limit ◮ Closed integral equations are derived for this special model ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r Alexander Hock

  14. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 13 /18 ▼ü♥st❡r Nonlinear closed integral equation of the 2-point func- tion for the 3-colour model λ 2 1 G aa p 1 p 2 = + 1 + p 1 + p 2 (1 + p 1 + p 2 ) ( p 1 − p 2 ) � Λ 2 � � � 3 G aa G aa qp 2 − G aa × dq p 1 p 2 p 1 q 0 � Λ 2 � Λ 2 dq G aa p 1 q − G aa dq G aa p 2 q − G aa ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ � p 1 p 2 p 1 p 2 − + ❲❲❯▼ü♥st❡r q − p 2 q − p 1 0 0 Can be used perturbatively ∞ G aa � λ n G aa p 1 p 2 = n , p 1 p 2 n =0 Alexander Hock

  15. ❲❡st❢ä❧✐s❝❤❡ ❲✐❧❤❡❧♠s✲❯♥✐✈❡rs✐tät 14 /18 ▼ü♥st❡r 3-Colour model, 2-point function perturbative result (Λ 2 = ∞ ) 2 λ 2 log( 1+ p 1 1+ p 2 ) 1 G aa p 1 p 2 = + (1 + p 1 + p 2 ) 2 ( p 1 − p 2 ) 1 + p 1 + p 2 3 log( 1+ p 1 1+ p 2 ) 2 2 λ 4 � + (1 + p 1 + p 2 ) 2 ( p 1 − p 2 ) (1 + p 1 + p 2 )( p 1 − p 2 ) ❧✐✈✐♥❣ ❦♥♦✇❧❡❞❣❡ ❲❲❯▼ü♥st❡r 2 log(1 + p 1 ) 2 log(1 + p 2 ) p 1 (1 + 2 p 1 )(1 + p 1 ) − + p 2 (1 + 2 p 2 )(1 + p 2 ) � π 2 � � π 2 � p 1 p 2 (1 + 2 p 2 ) 6 + 2 Li 2 ( 1+ p 1 ) (1 + 2 p 1 ) 6 + 2 Li 2 ( 1+ p 2 ) � − + (1 + 2 p 1 ) 2 (1 + p 1 + p 2 ) (1 + 2 p 2 ) 2 (1 + p 1 + p 2 ) Alexander Hock

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend