correlation functions for colored tensor models
play

Correlation functions for colored tensor models Schwinger-Dyson - PowerPoint PPT Presentation

Correlation functions for colored tensor models Schwinger-Dyson Equations Carlos. I. P erez-S anchez Mathematics Institute, University of M unster LQP 40, Max-Planck-Institut f ur Mathematik MIS Leipzig, 23 June Motivation


  1. Correlation functions for colored tensor models Schwinger-Dyson Equations Carlos. I. P´ erez-S´ anchez Mathematics Institute, University of M¨ unster LQP 40, Max-Planck-Institut f¨ ur Mathematik MIS Leipzig, 23 June

  2. Motivation Motivation Random Geometry framework (“Quantum Gravity”) � � � � 1 1 D [ g ] e − S EH [ g ] ∼ k ∑ ∑ Z = µ D k k D 2 2 topologies ) ∈ topologies ( geometries geometries Random matrices do that successfully for 2 D. Random tensor models is a higher-dimensional arena, together with QFT-techniques, based on this idea Gurau-Witten model based on SYK-model (Sachdev-Ye–Kitaev). Random tensor methods useful in AdS 2 /CFT 1 (Maldacena, Stanford) C. I. P´ erez S´ anchez (Math. M¨ unster) Motivation 23 June 2 / 30

  3. Outline Outline matrix and random tensor models Non-perturbative approach to quantum (coloured) tensor fields ϕ 4 -intearction Λ 0 Λ ≫ Λ 0 ◮ graph-calculus: correlation functions ◮ full Ward-Takahashi Identities: non-perturbative, systematic approach ◮ Schwinger-Dyson equations: equations for the multiple-point functions (joint work with Raimar Wulkenhaar) C. I. P´ erez S´ anchez (Math. M¨ unster) Outline 23 June 3 / 30

  4. Random matrix theory: ensembles Nuclear physics (Wigner). Stochastics: E ⊂ M N ( K ) : � Z = E d µ Statistics of random eigenvalues; study limit N ∞ ; universality, µ -independence (tensor models too: book by R. Gur˘ au) usually, for certain polynomial P ( x ) = Nx 2 /2 + N V ( x ) , � � � E d M e − Tr P ( M ) = − N Tr V ( M ) = E d M e − N 2 Tr M 2 E d µ 0 e − N Tr V ( M ) Z = � �� � d µ 0 Kontsevich, Grosse-Wulkenhaar, Barrett-Glaser, . . . models V ( M ) = M p ( p = 4, 6, 8 ) C. I. P´ erez S´ anchez (Math. M¨ unster) Matrix models 23 June 4 / 30

  5. Random matrix theory: ensembles Nuclear physics (Wigner). Stochastics: E ⊂ M N ( K ) : � Z = E d µ Statistics of random eigenvalues; study limit N ∞ ; universality, µ -independence (tensor models too: book by R. Gur˘ au) usually, for certain polynomial P ( x ) = Nx 2 /2 + N V ( x ) , � � � E d M e − Tr P ( M ) = − N Tr V ( M ) = E d M e − N 2 Tr M 2 E d µ 0 e − N Tr V ( M ) Z = � �� � d µ 0 Kontsevich, Grosse-Wulkenhaar, Barrett-Glaser, . . . models V ( M ) = M p ( p = 4, 6, 8 ) , , , . . . C. I. P´ erez S´ anchez (Math. M¨ unster) Matrix models 23 June 4 / 30

  6. “Rank- 2 tensor models” � D [ M , M ] e − Tr ( MM † ) − λ V ( M , M † ) For complex matrix models M M = dual triangulation to . M M M . . . . . . M M M ) = λ Tr (( MM † ) 2 ) , different connected O ( λ 2 ) -graphs are For V ( M , ¯ 0 0 0 0 2 1 1 2 2 1 2 1 0 0 1 2 2 1 1 2 1 2 0 0 t . U ( 1 ) M ( U ( 2 ) ) rectangular matrices, M ∈ M N 1 × N 2 ( C ) and M U ( N 1 ) × U ( N 2 ) -invariants are Tr (( MM † ) q ) , q ∈ Z ≥ 1 C. I. P´ erez S´ anchez (Math. M¨ unster) Ribbon graphs as coloured ones 23 June 5 / 30

  7. “Rank- 2 tensor models” � D [ M , M ] e − Tr ( MM † ) − λ V ( M , M † ) For complex matrix models M M = dual triangulation to . M M M . . . . . . M M M ) = λ Tr (( MM † ) 2 ) , different connected O ( λ 2 ) -graphs are For V ( M , ¯ 0 0 0 0 2 1 1 2 2 1 1 2 0 1 2 2 1 1 2 2 1 0 0 0 t . U ( 1 ) M ( U ( 2 ) ) rectangular matrices, M ∈ M N 1 × N 2 ( C ) and M U ( N 1 ) × U ( N 2 ) -invariants are Tr (( MM † ) q ) , q ∈ Z ≥ 1 C. I. P´ erez S´ anchez (Math. M¨ unster) Ribbon graphs as coloured ones 23 June 5 / 30

  8. “Rank- 2 tensor models” � D [ M , M ] e − Tr ( MM † ) − λ V ( M , M † ) For complex matrix models M M = dual triangulation to . M M M . . . . . . M M M ) = λ Tr (( MM † ) 2 ) , different connected O ( λ 2 ) -graphs are For V ( M , ¯ 0 0 0 0 2 1 1 2 2 1 1 2 0 1 2 2 1 1 2 2 1 0 0 0 t . U ( 1 ) M ( U ( 2 ) ) rectangular matrices, M ∈ M N 1 × N 2 ( C ) and M U ( N 1 ) × U ( N 2 ) -invariants are Tr (( MM † ) q ) , q ∈ Z ≥ 1 C. I. P´ erez S´ anchez (Math. M¨ unster) Ribbon graphs as coloured ones 23 June 5 / 30

  9. Coloured Tensor Models Coloured Tensor Models a quantum field theory for tensors ϕ a 1 ... a D and ϕ a 1 ... a D the indices transform under different representations of G = U ( N 1 ) × U ( N 2 ) × . . . × U ( N D ) for g ∈ G , g = ( U ( 1 ) , . . . , U ( D ) ) , U ( a ) ∈ U ( N a ) , g ( ϕ ′ ) a 1 a 2 ... a D = U ( 1 ) a 1 b 1 U ( 2 ) a 2 b 2 . . . U ( D ) ϕ a 1 a 2 ... a D a D b D ϕ b 1 ... b D the complex conjugate tensor ϕ a 1 a 2 ... a D transforms as g ( ϕ ′ ) a 1 a 2 ... a D = U ( 1 ) ( 2 ) ( D ) ϕ a 1 a 2 ... a D a 1 b 1 U a 2 b 2 . . . U a D b D ϕ b 1 b 2 ... b D G -invariants serve as interaction vertices S [ ϕ , ϕ ] = ∑ τ i Tr B i ( ϕ , ϕ ) = Tr B 2 ( ϕ , ϕ ) + ∑ λ α Tr B α ( ϕ , ϕ ) α i C. I. P´ erez S´ anchez (Math. M¨ unster) Coloured Tensors 23 June 6 / 30

  10. Feynman diagrams: Choose an action, for instance, the ϕ 4 3 -theory, S [ ϕ , ¯ ϕ ] = Tr B 2 ( ϕ , ϕ ) + λ ( Tr V 1 ( ϕ , ϕ ) + Tr V 2 ( ϕ , ϕ ) + Tr V 3 ( ϕ , ϕ )) and V 1 = , V 2 = , V 3 = , � D [ ϕ , ¯ ϕ J ) − N 2 S [ ϕ , ϕ ] ϕ ] e Tr B 2 ( J ϕ )+ Tr B 2 ( ¯ Z [ J , ¯ J ] = � D [ ϕ , ¯ , with Tr B 2 ↔ ϕ ] e − N 2 S [ ϕ , ϕ ] d ϕ a d ϕ a ϕ ] e − N 2 S 0 [ ϕ , ϕ ] : = ∏ e − N 2 Tr B 2 ( ϕ , ϕ ) d µ C ( ϕ , ϕ ) : = D [ ϕ , ¯ 2 π i a • Write for Wick’s contractions w.r.t. the Gaußian measure � d µ C ( ϕ , ϕ ) ϕ a ϕ p = C ( a , p ) = δ ap = a p C. I. P´ erez S´ anchez (Math. M¨ unster) Feynman diagrams 23 June 7 / 30

  11. Feynman diagrams: Choose an action, for instance, the ϕ 4 3 -theory, S [ ϕ , ¯ ϕ ] = Tr B 2 ( ϕ , ϕ ) + λ ( Tr V 1 ( ϕ , ϕ ) + Tr V 2 ( ϕ , ϕ ) + Tr V 3 ( ϕ , ϕ )) and V 1 = , V 2 = , V 3 = , � D [ ϕ , ¯ ϕ J ) − N 2 S [ ϕ , ϕ ] ϕ ] e Tr B 2 ( J ϕ )+ Tr B 2 ( ¯ Z [ J , ¯ J ] = � D [ ϕ , ¯ , with Tr B 2 ↔ ϕ ] e − N 2 S [ ϕ , ϕ ] d ϕ a d ϕ a ϕ ] e − N 2 S 0 [ ϕ , ϕ ] : = ∏ e − N 2 Tr B 2 ( ϕ , ϕ ) d µ C ( ϕ , ϕ ) : = D [ ϕ , ¯ 2 π i a • Write for Wick’s contractions w.r.t. the Gaußian measure � d µ C ( ϕ , ϕ ) ϕ a ϕ p = C ( a , p ) = δ ap = a p C. I. P´ erez S´ anchez (Math. M¨ unster) Feynman diagrams 23 June 7 / 30

  12. 0 0 0 2 1 1 3 3 2 3 2 0 0 0 1 3 2 1 = 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 2 0 0 0 2 1 2 1 3 2 1 3 0 0 0 1 1 Vertex bipartite regularly edge– D -coloured graphs Feynman graphs of a model V , Feyn D ( V ) are ( D + 1 ) -coloured. Crystallization theory or GEMs [ Pezzana , ‘74] says all PL-manifolds of dimension D can be represented as D + 1 -coloured graphs, Grph D + 1 . C. I. P´ erez S´ anchez (Math. M¨ unster) Feynman diagrams 23 June 8 / 30

  13. The complex ∆ ( G ) for each vertex v ∈ G ( 0 ) , add a D -simplex σ v to ∆ ( G ) with colour-labelled vertices { 0, 1, . . . , D } 0 ϕ , ¯ ϕ v D k 1 for each edge e k ∈ G ( 1 ) of arbitrary colour k , one identifies the two k ( D − 1 ) -simplices σ s ( e k ) and σ t ( e k ) that do not contain the colour k . 0 0 k s ( e k ) t ( e k ) , D k D k e k 1 1 ϕ p 1 ... p k ... p D ( k � = 0 ) or ϕ a ¯ edges come from either ϕ a 1 ... a k ... a D δ a k p k ¯ ϕ p ( k = 0 ). au, ’09] and [Bonzom, Gur˘ au, Riello, Rivasseau, ’11] ; [Gur˘ F ( G ) − D ( D − 1 ) A ( G ) = λ V ( G ) /2 N V ( G ) = exp ( − S Regge [ N , D , λ ]) 4 � �� � 2 = : D − ( D − 1 ) ! ω ( G ) � generalizes g ; not topol. invariant C. I. P´ erez S´ anchez (Math. M¨ unster) Graph-encoded topology 23 June 9 / 30

  14. The complex ∆ ( G ) for each vertex v ∈ G ( 0 ) , add a D -simplex σ v to ∆ ( G ) with colour-labelled vertices { 0, 1, . . . , D } 0 ϕ , ¯ ϕ v D k 1 for each edge e k ∈ G ( 1 ) of arbitrary colour k , one identifies the two k ( D − 1 ) -simplices σ s ( e k ) and σ t ( e k ) that do not contain the colour k . 0 0 k s ( e k ) t ( e k ) , D k D k e k 1 1 ϕ p 1 ... p k ... p D ( k � = 0 ) or ϕ a ¯ edges come from either ϕ a 1 ... a k ... a D δ a k p k ¯ ϕ p ( k = 0 ). au, ’09] and [Bonzom, Gur˘ au, Riello, Rivasseau, ’11] ; [Gur˘ F ( G ) − D ( D − 1 ) A ( G ) = λ V ( G ) /2 N V ( G ) = exp ( − S Regge [ N , D , λ ]) 4 � �� � 2 = : D − ( D − 1 ) ! ω ( G ) � generalizes g ; not topol. invariant C. I. P´ erez S´ anchez (Math. M¨ unster) Graph-encoded topology 23 June 9 / 30

  15. Ward-Takahashi Identity Ward-Takahashi Identity motivated by the WTI for matrix models by [Disertori-Gurau-Magnen-Rivasseau] ; WTI fully exploited by [Grosse-Wulkenhaar] for T α a a hermitian generator of the a -th summand of Lie ( U ( N ) D ) , δ log Z [ J , ¯ J ] = 0. δ ( T α a ) m a n a this implies a relation of the type δ 2 Z [ J , ¯ J ] J Z [ J , ¯ ∑ E ( m a , n a ) = D J ,¯ J ] δ J p 1 ... p a − 1 m a p a + 1 ... p D ¯ J p 1 ... p a − 1 n a p a + 1 ... p D p i ∈ Z where E ( m a , n a ) = − E ( n a , m a ) anihilates δ m a n a -terms. Aim: find them. C. I. P´ erez S´ anchez (Math. M¨ unster) The full WTI for tensor models 23 June 10 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend