the 1 n expansion in colored tensor models
play

The 1 / N Expansion in Colored Tensor Models R azvan Gur au - PowerPoint PPT Presentation

The 1 / N Expansion in Colored Tensor Models R azvan Gur au Laboratoire dInformatique de Paris-Nord, 2011 The 1 / N Expansion in Colored Tensor Models, Laboratoire dInformatique de Paris-Nord, 2011 R azvan Gur au, Introduction


  1. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs 4

  2. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs Consider the partition function. � � � � φ a 1 a 2 δ a 1 b 1 δ a 2 b 2 φ ∗ b 1 b 2 + λ � φ a 1 a 2 φ a 2 a 3 φ a 3 a 1 1 − N 2 Z ( Q ) = [ d φ ] e 4

  3. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs Consider the partition function. � � � � φ a 1 a 2 δ a 1 b 1 δ a 2 b 2 φ ∗ b 1 b 2 + λ � φ a 1 a 2 φ a 2 a 3 φ a 3 a 1 1 − N 2 Z ( Q ) = [ d φ ] e The vertex is a ribbon vertex because the field φ has two arguments. φ φ a a a a 1 2 3 1 a 1 a a 3 2 φ a a 2 3 4

  4. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs Consider the partition function. � � � � φ a 1 a 2 δ a 1 b 1 δ a 2 b 2 φ ∗ b 1 b 2 + λ � φ a 1 a 2 φ a 2 a 3 φ a 3 a 1 1 − N 2 Z ( Q ) = [ d φ ] e The vertex is a ribbon vertex because the field φ has two arguments. The lines conserve the two arguments (thus having two strands). φ φ a a a a 1 2 b 3 1 a 1 a 1 1 b a a 3 2 2 a 2 φ a a 2 3 4

  5. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs Consider the partition function. � � � � φ a 1 a 2 δ a 1 b 1 δ a 2 b 2 φ ∗ b 1 b 2 + λ � φ a 1 a 2 φ a 2 a 3 φ a 3 a 1 1 − N 2 Z ( Q ) = [ d φ ] e The vertex is a ribbon vertex because the field φ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces. φ φ a a b a a 1 2 3 1 a a 1 1 1 b a a 3 2 2 a 2 φ a a 2 3 4

  6. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs as Feynman Graphs Consider the partition function. � � � � φ a 1 a 2 δ a 1 b 1 δ a 2 b 2 φ ∗ b 1 b 2 + λ � φ a 1 a 2 φ a 2 a 3 φ a 3 a 1 1 − N 2 Z ( Q ) = [ d φ ] e The vertex is a ribbon vertex because the field φ has two arguments. The lines conserve the two arguments (thus having two strands). The strands close into faces. φ φ a a b a a 1 2 3 1 a a 1 1 1 b a a 3 2 2 a 2 φ a a 2 3 Z ( Q ) is a sum over ribbon Feynman graphs. 4

  7. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs 5

  8. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines 5

  9. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � δ a 1 b 1 w 1 a b 1 1 b 3 a 3 a b 2 2 5

  10. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � δ a 1 b 1 δ b 1 c 1 w 1 a b 1 1 b 3 a 3 a b 2 2 5

  11. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � δ a 1 b 1 δ b 1 c 1 . . . δ w 1 a 1 w 1 a b 1 1 b 3 a 3 a b 2 2 5

  12. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � � δ a 1 b 1 δ b 1 c 1 . . . δ w 1 a 1 = δ a 1 a 1 = N w 1 a b 1 1 b 3 a 3 a b 2 2 A = λ N N N −L + F = λ N N 2 − 2 g ( G ) with g G is the genus of the graph. 5

  13. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � � δ a 1 b 1 δ b 1 c 1 . . . δ w 1 a 1 = δ a 1 a 1 = N w 1 a b 1 1 b 3 a 3 a b 2 2 A = λ N N N −L + F = λ N N 2 − 2 g ( G ) with g G is the genus of the graph. 1 / N expansion in the genus. 5

  14. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Amplitude of Ribbon Graphs The Amplitude of a graph with N vertices is A = λ N N −L + N � � δ a 1 b 1 δ a 2 b 2 lines � � δ a 1 b 1 δ b 1 c 1 . . . δ w 1 a 1 = δ a 1 a 1 = N w 1 a b 1 1 b 3 a 3 a b 2 2 A = λ N N N −L + F = λ N N 2 − 2 g ( G ) with g G is the genus of the graph. 1 / N expansion in the genus. Planar graphs ( g G = 0) dominate in the large N limit. 5

  15. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces 6

  16. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces w 1 a b 1 1 b 3 a 3 b a 2 2 6

  17. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. w 1 a b 1 1 b 3 a 3 b a 2 2 6

  18. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. w 1 a b 1 1 b 3 a 3 b a 2 2 6

  19. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon w 1 a b 1 vertices correspond to triangles. 1 b 3 a 3 b a 2 2 6

  20. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon w 1 a b 1 vertices correspond to triangles. 1 b 3 a 3 b a 2 2 A ribbon graph encodes unambiguously a gluing of triangles. 6

  21. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon w 1 a b 1 vertices correspond to triangles. 1 b 3 a 3 b a 2 2 A ribbon graph encodes unambiguously a gluing of triangles. Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules). 6

  22. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon w 1 a b 1 vertices correspond to triangles. 1 b 3 a 3 b a 2 2 A ribbon graph encodes unambiguously a gluing of triangles. Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules). The dominant planar graphs represent spheres. 6

  23. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models 7

  24. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models surfaces ↔ ribbon graphs 7

  25. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs 7

  26. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Matrix M ab , � � M ab ¯ S = N M ab + λ M ab M bc M ca 7

  27. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... 7

  28. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus 7

  29. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus ω ( G ) ≥ 0 degree 7

  30. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus ω ( G ) ≥ 0 degree 1 / N expansion in the genus A ( G ) = N 2 − 2 g ( G ) 7

  31. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus ω ( G ) ≥ 0 degree 1 / N expansion in the degree 1 / N expansion in the genus 2 A ( G ) = N 2 − 2 g ( G ) A ( G ) = N D − ( D − 1)! ω ( G ) 7

  32. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus ω ( G ) ≥ 0 degree 1 / N expansion in the degree 1 / N expansion in the genus 2 A ( G ) = N 2 − 2 g ( G ) A ( G ) = N D − ( D − 1)! ω ( G ) leading order: g ( G ) = 0, spheres. 7

  33. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion From Matrix to COLORED Tensor Models D dimensional spaces ↔ colored stranded graphs surfaces ↔ ribbon graphs Tensors T i a 1 ... a D with color i Matrix M ab , � � S = N D / 2 � � M ab ¯ ... ¯ S = N M ab + λ M ab M bc M ca T i T i ... + λ T 0 ... T 1 ... . . . T D ... g ( G ) ≥ 0 genus ω ( G ) ≥ 0 degree 1 / N expansion in the degree 1 / N expansion in the genus 2 A ( G ) = N 2 − 2 g ( G ) A ( G ) = N D − ( D − 1)! ω ( G ) leading order: g ( G ) = 0, spheres. leading order: ω ( G ) = 0, spheres. 7

  34. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Introduction Colored Tensor Models Colored Graphs Jackets and the 1 / N expansion Topology Leading order graphs are spheres Conclusion 8

  35. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs 9

  36. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices). 9

  37. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs 1 1 2 (0,1) (0,1) Clockwise and anticlockwise turning colored 0 0 2 vertices (positive and negative oriented D 3 4 simplices). 3 (0,1) 1 (0,1) 1 0 0 9

  38. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs 1 1 2 (0,1) (0,1) Clockwise and anticlockwise turning colored 0 0 2 vertices (positive and negative oriented D 3 4 simplices). 3 (0,1) 1 (0,1) 1 0 0 Lines have a well defined color and D parallel strands ( D − 1 simplices). 9

  39. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs 1 1 2 (0,1) (0,1) Clockwise and anticlockwise turning colored 0 0 2 vertices (positive and negative oriented D 3 4 simplices). 3 (0,1) 1 (0,1) 1 0 0 1 1 1 1 (0,1) (0,1) Lines have a well defined color and D parallel 0 0 strands ( D − 1 simplices). (0,1) (0,1) 1 1 0 0 1 1 9

  40. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Colored Stranded Graphs 1 1 2 (0,1) (0,1) Clockwise and anticlockwise turning colored 0 0 2 vertices (positive and negative oriented D 3 4 simplices). 3 (0,1) 1 (0,1) 1 0 0 1 1 1 1 (0,1) (0,1) Lines have a well defined color and D parallel 0 0 strands ( D − 1 simplices). (0,1) (0,1) 1 1 0 0 1 1 Strands are identified by a couple of colors ( D − 2 simplices). 9

  41. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action 10

  42. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . 10

  43. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i 10

  44. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs 10

  45. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: 10

  46. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 10

  47. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 10

  48. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 ◮ the F faces of a graph bring each N 10

  49. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 ◮ the F faces of a graph bring each N A G = ( λ ¯ λ ) p N −L D 2 + N D 2 + F 10

  50. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 ◮ the F faces of a graph bring each N A G = ( λ ¯ λ ) p N −L D 2 + N D 2 + F But N ( D + 1) = 2 L ⇒ L = ( D + 1) p 10

  51. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 ◮ the F faces of a graph bring each N A G = ( λ ¯ λ ) p N −L D 2 + F = ( λ ¯ λ ) p N − p D ( D − 1) 2 + N D + F 2 But N ( D + 1) = 2 L ⇒ L = ( D + 1) p 10

  52. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Action a 1 ... a D , ¯ Let T i T i a 1 ... a D tensor fields with color i = 0 . . . D . S = N D / 2 � � � � � ¯ a ii − 1 ... a i 0 a iD ... a ii +1 + ¯ ¯ T i a 1 ... a D T i T i T i a 1 ... a D + λ λ a ii − 1 ... a i 0 a iD ... a ii +1 i i i Topology of the Colored Graphs Amplitude of the graphs: ◮ the N = 2 p vertices of a graph bring each N D / 2 ◮ the L lines of a graphs bring each N − D / 2 ◮ the F faces of a graph bring each N A G = ( λ ¯ λ ) p N −L D 2 + F = ( λ ¯ λ ) p N − p D ( D − 1) 2 + N D + F 2 But N ( D + 1) = 2 L ⇒ L = ( D + 1) p Compute F ! 10

  53. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Introduction Colored Tensor Models Colored Graphs Jackets and the 1 / N expansion Topology Leading order graphs are spheres Conclusion 11

  54. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 12

  55. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. 12

  56. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 12

  57. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 1 0 2 3 1 2 0 3 12

  58. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. 1 0 2 3 1 2 0 3 12

  59. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. 1 0 2 3 1 2 0 3 12

  60. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 1 2 0 3 12

  61. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 12

  62. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 1 2 0 12

  63. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 1 2 0 0 , 1 , 2 , . . . 12

  64. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 2 0 0 0 , 1 , 2 , . . . 12

  65. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 2 0 0 0 , π (0) , π 2 (0) , . . . 0 , 1 , 2 , . . . 12

  66. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 1 2 D ! jackets. 2 0 0 0 , π (0) , π 2 (0) , . . . 0 , 1 , 2 , . . . 12

  67. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 1 2 D ! jackets. Contain all the vertices and 2 0 0 all the lines of G . 0 , π (0) , π 2 (0) , . . . 0 , 1 , 2 , . . . 12

  68. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 1 2 D ! jackets. Contain all the vertices and 2 0 0 all the lines of G . A face belongs to ( D − 1)! jackets. 0 , π (0) , π 2 (0) , . . . 0 , 1 , 2 , . . . 12

  69. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) 1 graphs. 0 2 3 0 0 0 1 2 1 1 1 3 3 3 0 2 2 2 3 π(0) 1 2 π (0) 1 2 D ! jackets. Contain all the vertices and 2 0 0 all the lines of G . A face belongs to ( D − 1)! jackets. 0 , π (0) , π 2 (0) , . . . 0 , 1 , 2 , . . . The degree of G is ω ( G ) = � J g J . 12

  70. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude 13

  71. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude Theorem F and ω ( G ) are related by F = 1 2 2 D ( D − 1) p + D − ( D − 1)! ω ( G ) 13

  72. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude Theorem F and ω ( G ) are related by F = 1 2 2 D ( D − 1) p + D − ( D − 1)! ω ( G ) Proof: N = 2 p , L = ( D + 1) p 13

  73. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude Theorem F and ω ( G ) are related by F = 1 2 2 D ( D − 1) p + D − ( D − 1)! ω ( G ) Proof: N = 2 p , L = ( D + 1) p For each jacket J , 2 p − ( D + 1) p + F J = 2 − 2 g J . 13

  74. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude Theorem F and ω ( G ) are related by F = 1 2 2 D ( D − 1) p + D − ( D − 1)! ω ( G ) Proof: N = 2 p , L = ( D + 1) p For each jacket J , 2 p − ( D + 1) p + F J = 2 − 2 g J . Sum over the jackets: ( D − 1)! F = � 2 D !( D − 1) p + D ! − 2 � J F J = 1 J g J 13

  75. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Jackets 2: Jackets and Amplitude Theorem F and ω ( G ) are related by F = 1 2 2 D ( D − 1) p + D − ( D − 1)! ω ( G ) Proof: N = 2 p , L = ( D + 1) p For each jacket J , 2 p − ( D + 1) p + F J = 2 − 2 g J . Sum over the jackets: ( D − 1)! F = � 2 D !( D − 1) p + D ! − 2 � J F J = 1 J g J The amplitude of a graph is given by its degree A G = ( λ ¯ λ ) p N − p D ( D − 1) + F = ( λ ¯ λ ) p N D − 2 ( D − 1)! ω ( G ) 2 13

  76. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Introduction Colored Tensor Models Colored Graphs Jackets and the 1 / N expansion Topology Leading order graphs are spheres Conclusion 14

  77. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Topology 1: Colored vs. Stranded Graphs 15

  78. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Topology 1: Colored vs. Stranded Graphs THEOREM: [M. Ferri and C. Gagliardi, ’82] Any D -dimensional piecewise linear orientable manifold admits a colored triangulation. 15

  79. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Topology 1: Colored vs. Stranded Graphs THEOREM: [M. Ferri and C. Gagliardi, ’82] Any D -dimensional piecewise linear orientable manifold admits a colored triangulation. We have clockwise and anticlockwise turning vertices. 15

  80. The 1 / N Expansion in Colored Tensor Models, Laboratoire d’Informatique de Paris-Nord, 2011 R˘ azvan Gur˘ au, Introduction Colored Tensor Models Conclusion Topology 1: Colored vs. Stranded Graphs THEOREM: [M. Ferri and C. Gagliardi, ’82] Any D -dimensional piecewise linear orientable manifold admits a colored triangulation. We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend