renormalization of tensor network states
play

Renormalization of Tensor Network States II. RG of Tensor Network - PowerPoint PPT Presentation

Renormalization of Tensor Network States II. RG of Tensor Network States Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Tensor-Network Ansatz of the ground state wavefunction 1D: Matrix Product State (MPS) : m


  1. Renormalization of Tensor Network States II. RG of Tensor Network States Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn

  2. Tensor-Network Ansatz of the ground state wavefunction

  3. 1D: Matrix Product State (MPS) : m L-2 m 3 m 1 m 2 m 3 … … m L-1 m L … m 2 m L-1 m 1   d m L  A  [ m 2 ] D Virtual basis state      |  =  (𝑛 1 , … 𝑛 𝑀 )|𝑛 1 , … 𝑛 𝑀  Tr A m [ ]... [ A m ] m ... m 1 L 1 L 𝑛 1 ,…𝑛 𝑀 m m 1 L 𝑒𝐸 2 𝑀 parameters 𝑒 𝑀 parameters Parameter number grows Parameter number grows linearly with L exponentially with L MPS is the wave function generated by the DMRG

  4. Example : S=1 AKLT valence bond solid state 1 = 1 2  1   1 1 2        2  H S S S S     2  i i 1 i i 1  2 3 3 i m m     = A  [ m ] A  [ m ] virtual S=1/2 spin      Tr A m [ ]... [ A m ] m ... m 1 L 1 L A  [ m ] : m m 1 L To project two virtual S=1/2 states,  and  ,        0 0 1 0 0 2     onto a S=1 state m     [ 1] [0]   [1] A A A   0 1     2 0 0 0 Affleck, Kennedy, Lieb, Tasaki, PRL 59 , 799 (1987)

  5. Gauge Invariance MPS wavefunction is unchanged if one replaces A[m] by 𝐵 𝑛 → 𝐵′ 𝑛 = 𝑄𝐵 𝑛 𝑄 -1 Matrix product state (MPS)      m Tr A m [ ]... [ A m ] m ... m 1 L 1 L   m m 1 L A  [ m ] m 1 m 2 m 3 … … m L-1 m L

  6. MPS as a Projection of 2D Tensor-Network Model A i

  7. Matrix Product Operator 𝑛 1 𝑛 2 𝑛 3 … … 𝑛 𝑀−1 𝑛 𝑀   M  ′ … … 𝑛 𝑀−1 ′ ′ ′ ′ 𝑛 1 𝑛 2 𝑛 3 𝑛 𝑀 ′ ⋯ 𝑁 𝑛 𝑀 , 𝑛 𝑀 ′ | ′ | ′ 𝑃 = 𝑈𝑠 𝑁 𝑛 1 , 𝑛 1 𝑛 1 ⋯ 𝑛 𝑀 𝑛 1 ⋯ 𝑛 𝑀 𝑛 Ground state eigen-operator:   | 𝑃 =| =

  8. 2D: Projected Entangled Pair State (PEPS) Virtual spins at each bond form a maximally entangled state Physical Local Virtual basis basis tensor 𝑛 𝑧 𝑈 𝑦𝑦 ′ 𝑧𝑧 ′ [𝑛 ] = 𝑦 𝑦′ D y' Key parameter: virtual basis dimension D

  9. Tensor-Network State as a Variational Ansatz  Tensor product states H. Niggemann and J. Zittarz, Z. Phys. B 101, 289 (1996) G. Sierra and M. Martin-Delgado, 1998  Variational approach: Nishino, Okunishi, Maeshima, Hieida, Akutsu, Gendiar (since 1998)  Projected entangled pair states (PEPS) : Area law obeys F. Verstraete and J. Cirac, cond-mat/0407066

  10. PEPS: exact representation of Valence Bond Solid S = 2 Physical state Virtual basis state 𝑑 𝑏 𝑐 𝑈 𝑏𝑐𝑑𝑒 [𝑛 𝑗 ] = 𝑛 𝑗 d 1/2 𝐼 = 𝑄 4 (𝑗, 𝑘) 𝑗𝑘 To project two S=2 spins on sites i and j onto a total spin S=4 state

  11. Bond Dimension Dependence of Physical Quantities Bond dimension dependence of the ground state energy and magnetization  Gapless: Power law dependent on D  Gapped: Exponential law dependent on D

  12. Two Problems Need to Be Solved 1. Determine the local tensors 2. Evaluate the physical observables using the TRG or other tensor network RG methods

  13. Evaluation of Expectation Values 𝑒 = 𝐸 2 𝐸  | 𝐸 2  |  | 

  14. How Large Is the Virtual Bond Dimension Needed? 𝑒 = 𝐸 2  In the DMRG or all tensor-related approached, small physical dimension d 𝐸 2 is much earlier to study than a larger 𝑒 (accuracy drops quickly with 𝑒 )  The virtual bond dimension needed to obtain a converged result is roughly of order 𝑒 , i.e. 𝐸 2 , of course, the larger the  |  better

  15. Computational Cost Meth thod od CP CPU U Time Minimum mum Memory ory TMRG/CTMRG 𝐸 12 𝑀 𝐸 10 TEBD 𝐸 12 𝑀 𝐸 10 TRG 𝐸 12 ln𝑀 𝐸 8 SRG 𝐸 12 ln𝑀 𝐸 8 HOTRG 𝐸 14 ln𝑀 𝐸 8 HOSRG 𝐸 16 ln𝑀 𝐸 12 TNR 𝐸 14 ln𝑀 𝐸 10 Loop-TNR 𝐸 12 ln𝑀 𝐸 8 𝐸 : bond dimension of PEPS bond dimension kept ~ 𝐸 2 𝑀 : lattice size

  16. Tensor Network States in the Frustrated Lattices Z. Y. Xie et al, PRX 4, 011025 (2014)

  17. Two Kinds of Frustrations More than two-body correlations/entanglements are important Geometric frustration J J N    H J S S  i i 1  i 1 J Quantum frustration e.g. S=1 bilinear-biquadratic Heisenberg model      2       H cos S S sin S S     i j i j ij

  18. PEPS on Kagome or Other Frustrated Lattices Max ( ) ~ 1 Max ( ) < 10 -6  There is a serious cancellation in the tensor elements if three tensors on a simplex (triangle here) are contracted  3-body (or more-body) entanglement is important

  19. Cancellation in the PEPS N    H J S S  1 i i  1 i

  20. Projected Entangled Simplex States (PESS) Z. Y. Xie et al, PRX 4, 011025 (2014) Projection tensor Simplex tensor  Virtual spins at each simplex form a maximally entangled state  Remove the geometry frustration: The PESS is defined on the decorated honeycomb lattice  Only 3 virtual bonds, low cost

  21. PESS as an exact representation of Simplex Solid States D. P. Arovas, Phys. Rev. B 77 , 104404 (2008) Example: S = 2 spin model on the Kagome lattice A S = 2 spin is a symmetric superposition of two virtual S = 1 spins Three virtual spins at each triangle form a spin singlet Projection tensor Simplex tensor

  22. S=2 Simplex Solid State on the Kagome Lattice Local tensors Parent Hamiltonians or antisymmetric tensor 𝐵 𝑏𝑐 [𝜏] = 1 1 2 C-G coefficients 𝑏 𝑐 𝜏 P n : projection operator Projection tensor Simplex tensor

  23. Larger Simplex PESS To enlarge each simplex so that it contains more physical spins 5-PESS: a decorated square lattice P. Corboz et al, PRB 86 , 041106 (2012). 9-PESS: a honeycomb lattice

  24. PESS on Triangular Lattice PEPS PESS dD 6 Simplex tensor: D 3 Order of local tensors: Projection tensor: dD 3

  25. PESS on Square Lattice J 1 - J 2 model J 1 only Vertex-sharing Edge-sharing

  26. How to Determine the Tensor-Network Wave Function

  27. Determination of Tensor Network Wavefunction 1. Imaginary time evolution Simple update (entanglement mean-field approach)  Jiang, Weng, Xiang, PRL 101 , 090603 (2008) the solution can be used as the initial input of local tensors in I or in the full update calculation Full update  Murg, Verstraete, Cirac, PRA 75 , 033605 (2007) 2. Minimize the ground state energy Nishino et al, Nuclear Physics B 575 [FS] 504 (2000) F. Verstraete and J. Cirac, cond-mat/0407066

  28. Variational Minimization of Ground State Energy Determine local tensors by minimizing the ground state energy  𝐼  𝐹 =  |   Accurate  Cost is high  D is generally less than 13 without using symmetries

  29. Simple Update: Entanglement Mean-Field Approach       Tr A [ m B ] [ m ] m m x y z x y z i x y z j i j i i i i i i j j j  i black  j white Bond vectors: measure approximately the “entanglement” on the corresponding bonds

  30. Simple Update: Entanglement Mean-Field Approach The local tensors are determined by projection e     H lim ground state     Converge fast  D as large as 100 can be calculated (more if symmetry is considered)  Exact on the Bethe lattice Li, von Delft, Xiang, PRB 86 , 195137 (2012)

  31. Canonical Form on the Bethe Lattice Li, von Delft, Xiang, PRB 86 , 195137 (2012)

  32. Simple Update: Imaginary Time Evolution      H H H H H Heisenberg model ij x y z ij   H JS S ij i j     H lim e ground state      M     H lim e ground state   M

  33. Imaginary Time Evolution            H H H H 2 ( ) e e e y e o z x Trotter-Suzuki     H H ( x , y , z ) decomposition    i , i  i black 1. One iteration      H e x 1 0      H e y 2 1 ~      H e z 0 2 2. Repeat the above iteration until converged

  34. One Step of Evolution               H H e Tr m m e i j , m m A [ m B ] [ m ] m m x i j i j x y z x y y i x y y j i j i i i i i i j j j  i black   ˆ j i x Step I Step I Step II Step II Step III Truncate basis space Step III SVD: singular value decomposition

  35. One Step of Evolution               H H e Tr m m e i j , m m A [ m B ] [ m ] m m x i j i j x y z x y y i x y y j i j i i i i i i j j j  i black   ˆ j i x  To use bond vector  as effective fields to take into account the Step I environment contribution  The projection is done locally. This Step II keeps the locality of wavefunction, making the calculation efficient Step III  Truncation error not accumulated SVD: singular value decomposition

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend