non scalar operators and logarithmic correlation
play

Non-scalar operators and logarithmic correlation functions for the - PowerPoint PPT Presentation

Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Non-scalar operators and logarithmic correlation functions for the Potts model in arbitrary dimension RGP 2016 - IHP Romain Couvreur


  1. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Non-scalar operators and logarithmic correlation functions for the Potts model in arbitrary dimension RGP 2016 - IHP Romain Couvreur Laboratoire de Physique Théorique - École Normale Supérieure Institut de Physique Théorique - CEA Saclay October 2016 Collaborators : Jesper L. Jacobsen, Romain Vasseur 1 / 13

  2. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Introduction • Scale Invariance : power-law and logarithmic correlation • c = 0 CFTs : percolation, disordered systems (IQHE,. . . ) • Logarithmic minimal models • Jordan cell in the dilatation operator L 0 • Two dimensions collide J. Cardy 2013 C i � � φ (0) φ ( r ) � = r 2∆ i , C 1 ∼ − C 2 → ∞ , C 1 (∆ 1 − ∆ 2 ) stays finite i contribution r − 2∆ 1 log r • Insight from discrete symmetries 2 / 13

  3. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Potts model • Q -state Potts model : discrete S Q symmetry � � e Kδ σi,σj , Z = σ = 1 , . . . , Q { σ } ( i,j ) ∈ E • Fortuin-Kasteleyn clusters ( Q ∈ R ) : ( e K − 1) | A | Q k ( A ) � Z = A ⊆ E 3 / 13

  4. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Operators acting on 1 spin σ : R. Vasseur, J. L. Jacobsen 2014 Q • General form : O ( σ ) = � O a δ σ,a a =1 • Action of the symmetric group S Q : Q Q � � ( p O )( σ ) = O a δ σ,p ( a ) = O a δ p − 1 ( σ ) ,a a =1 a =1 4 / 13

  5. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Operators acting on 1 spin σ : R. Vasseur, J. L. Jacobsen 2014 Q • General form : O ( σ ) = � O a δ σ,a a =1 • Action of the symmetric group S Q : Q Q � � ( p O )( σ ) = O a δ σ,p ( a ) = O a δ p − 1 ( σ ) ,a a =1 a =1 • Two irreps : Q t a ( σ ) = δ σ,a − 1 � t ( σ ) = δ σ,a , Q a =1 • Identity and magnetization operator • decomposition with Young diagrams L (1) Q = [ Q ] ⊕ [ Q − 1 , 1] 4 / 13

  6. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions General setup (short version) : Operator acting on N spins : Operators are Q × Q × . . . = Q N tensors : N � � L ( N ) � = Span O a 1 ,...,a N ( σ 1 , . . . , σ N ) = δ σ i ,a i Q i =1 Action of p ∈ S Q : O { a i } = O { p ( a i ) } S Q symmetry : • Choose Young tableau λ Q with at least Q − N boxes in the first row • Compute Young symmetrizer e λ Q • May have to specify S N representation • Generate invariant subspace of operators 5 / 13

  7. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Result for L (2) Q , operators acting on σ 1 and σ 2 : • Subspace with σ 1 = σ 2 isomorphic to L (1) Q • Symmetric operators under σ 1 ↔ σ 2 t [ Q ] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 ... � δ σ 1 ,a + δ σ 2 ,a − 2 � ... t [ Q − 1 , 1] , [2] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 a Q � t [ Q − 2 , 2] ... ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 δ σ 1 ,a δ σ 2 ,b + δ σ 1 ,b δ σ 2 ,a a,b 1 2 � � Q ( Q − 1) t [ Q ] � t [ Q − 1 , 1] , [2] + t [ Q − 1 , 1] , [2] − − a b Q − 2 6 / 13

  8. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Result for L (2) Q , operators acting on σ 1 and σ 2 : • Subspace with σ 1 = σ 2 isomorphic to L (1) Q • Symmetric operators under σ 1 ↔ σ 2 t [ Q ] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 ... � δ σ 1 ,a + δ σ 2 ,a − 2 � ... t [ Q − 1 , 1] , [2] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 a Q � t [ Q − 2 , 2] ... ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 δ σ 1 ,a δ σ 2 ,b + δ σ 1 ,b δ σ 2 ,a a,b 1 2 � � Q ( Q − 1) t [ Q ] � t [ Q − 1 , 1] , [2] + t [ Q − 1 , 1] , [2] − − a b Q − 2 • Anti-symmetric operators under σ 1 ↔ σ 2 ... t [ Q − 1 , 1] , [1 , 1] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 ( δ σ 1 ,a − δ σ 2 ,a ) a ... � t [ Q − 2 , 1 , 1] ( σ 1 , σ 2 ) = δ σ 1 � = σ 2 δ σ 1 ,a δ σ 2 ,b − δ σ 1 ,b δ σ 2 ,a a,b − 1 � � � t [ Q − 1 , 1] , [1 , 1] − t [ Q − 1 , 1] , [1 , 1] a b Q 6 / 13

  9. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Result for L (2) Q , operators acting on σ 1 and σ 2 : • L (2) decomposition : Q ... ... ... L (2) Q = L (1) Q ⊕ ⊕ 2 ⊕ ⊕ ... • Ok with hook formula Q 2 = Q + 1 + 2( Q − 1) + Q ( Q − 3) + ( Q − 1)( Q − 2) 2 2 • Subtracted operators correspond to Young diagrams with boxes removed • Poles are related to logarithmic features 7 / 13

  10. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Correlation functions for N = 1 , 2 , some examples • We can compute correlation functions with FK-clusters � � � � = 1 δ a,b − 1 � � t [ Q − 1 , 1] t [ Q − 1 , 1] P a b Q Q • For N ≥ 2 each operators act on N spins in the same neighbourhood • Symmetric correlation functions N = 2 :       � 1 2 � � � t [ Q − 2 , 2] (0) t [ Q − 2 , 2] ( r ) (2 δδ ) − Q − 2 (4 δ ) +  P  + P       ∝ a,b c,d ( Q − 2)( Q − 1)     • Anti-symmetric correlation functions N = 2 :       � (2 δδ ) − 1 � � � t [ Q − 2 , 1 , 1] (0) t [ Q − 2 , 1 , 1] ( r ) Q (4 δ )  P  − P       ∝ a,b c,d     • Correlation functions defined for Q ∈ R for finite size � ˜ � (2 δδ ) − 1 Z ( Q ) � � t [ Q − 2 , 1 , 1] (0) t [ Q − 2 , 1 , 1] ( r ) ∝ Q (4 δ ) a,b c,d Z ( Q ) 8 / 13

  11. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Scale invariance • Power-law correlation functions � (2 δδ ) − 1 � 1 � � t [ Q − 2 , 1 , 1] (0) t [ Q − 2 , 1 , 1] ( r ) ∝ Q (4 δ ) a,b c,d r 2∆ λ 2 ( Q ) • on the cylinder from Jones-Temperley-Lieb representation theory ∆ = h k N ,N + h − k N ,N � � � � ... • 4-leg watermelon operator → P + P , ∆ = 2 h 0 , 2 � � � � ... • Other observables → P − P , ∆ = h − 1 / 2 , 2 + h 1 / 2 , 2 • Non-scalar , s = h − 1 / 2 , 2 − h 1 / 2 , 2 = 1 � � • 2d simplified, some configurations are forbidden : P 9 / 13

  12. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Numerics • Transfer matrix methods • Monte-Carlo simulation 10 / 13

  13. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Logarithmic correlation functions • How to deal with poles ? By mixing two operators • Percolation : 4 -leg watermelon operator diverges at Q → 1 2 ǫ = t [ Q ] , [2] − � t [ Q ] , [2] � t [ Q − 2 , 2] = regular part − Q ( Q − 1) ǫ, a,b 2 φ a,b = t [ Q − 2 , 2] + Q ( Q − 1) ǫ a,b • Correlation functions should be finite ∆ ǫ = ∆ 2 • Indeed in 2 d, ∆ ǫ = ∆ 2 = 5 / 4 Contribution as Q → 1 : � � 1 1 1 ∼ ∆ ǫ ( Q ) − ∆ 2 ( Q ) log r r 2∆ ǫ ( Q ) − r 2∆ 2 ( Q ) r 2∆ 2 (1) Q − 1 Q − 1 • energy and 4 -leg watermelon operator mixed in Jordan cell 11 / 13

  14. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Logarithmic correlation functions • Predict scaling laws on the lattice with universal constant δ � � � � ) 2 + P − P ( P ∼ δr − 2∆ 2 log r � � � � + P P • Can be verified with Monte-Carlo • Whole new set of Jordan cell with non-scalar operators • Conjecture for the position of the poles gives the "full" log structure 12 / 13

  15. Operator in the Potts model Correlation functions and non-scalar operators Log correlation functions Conclusion • Classification of operators/LogCFTs in any d with discrete symmetries • Partial results, other symmetries can be considered • Jordan-cell of higher rank ? • Bestiary of interesting geometrical observables 13 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend