thz i i i v hemt technology
play

THz I I I -V HEMT Technology J. A. del Alamo Microsystems - PowerPoint PPT Presentation

THz I I I -V HEMT Technology J. A. del Alamo Microsystems Technology Laboratories, MIT I nternational Wireless Symposium 2013 Workshop on THz Material Growth, Device Fabrication and Modeling Beijing, April 14, 2013 Acknowledgements: Dae-Hyun


  1. THz I I I -V HEMT Technology J. A. del Alamo Microsystems Technology Laboratories, MIT I nternational Wireless Symposium 2013 Workshop on THz Material Growth, Device Fabrication and Modeling Beijing, April 14, 2013 Acknowledgements: Dae-Hyun Kim, Jianqiang Lin, Tae-Woo Kim, Niamh Waldron Sponsors: FCRP-MSD, Intel, SRC, ARL Labs at MIT: MTL, SEBL, NSL

  2. Outline 1. High ‐ frequency III ‐ V HEMTs: megatrends 2. State ‐ of ‐ the ‐ art InGaAs HEMTs and f T analysis 3. The path to THz operation 2

  3. 1. I I I -V HEMT: record f T vs. time f T =710 GHz, f max =478 GHz Current record: Chen APEX 2013 f T =688 GHz f max =800 GHz Kim IEDM 2011 (Teledyne/MIT) (and MHEMT) Chen • For >20 years, record f T obtained on InGaAs ‐ channel HEMTs • InGaAs ‐ channel HEMTs offer record balanced f T and f max 3

  4. Record f T I I I -V HEMTs: megatrends • Over time: L g ↓ , In x Ga 1 ‐ x As channel x InAs ↑ • L g , x InAs saturated  no more progress possible? 4

  5. Record f T I I I -V HEMTs: megatrends • Over time: t ch ↓ , t ins ↓ t ch , t ins saturated  no more progress possible? • 5

  6. 2. State-of-the-art I nGaAs HEMT L g =40 nm InGaAs Metamorphic HEMT • In 0.7 Ga 0.3 As QW channel o t ch = 10 nm o µ n,Hall > 10,000 cm 2 /V ‐ sec • In 0.52 Al 0.48 As barrier + In 0.7 Al 0.3 As spacer (Kim, EL 2011) Dual Si  ‐ doping (Kim, IEDM 2010) • • Pt (3 nm)/Ti/Pt/Au Schottky o t ins =4 nm • InP etch stop (t InP =6 nm) • L side =100 nm • Gate stem > 250 nm GaAs substrate • Mo ‐ based S/D with 2 µm S ‐ D spacing Kim, IEDM 2011 6

  7. TEM cross section Au Pt G S D Ti HEMT Epi Graded Buffer Buried Pt GaAs Substrate 7

  8. Output and transfer characteristics Kim, IEDM 2011 1.2 3 L g =40 nm L g =40 nm V GS = 0.6 V 0.8 V 0.8 2 0.5 V I D [mA/  m] g m [mS/  m] 0.4 1 0.2 V V DS = 0.1 V 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 V DS [V] V GS [V] • Large current drive: I D >1 mA/µm at V DS =0.8 V • High transconductance: g mpk = 2.75 mS/ μ m at V DS =0.8 V • V T ≈ 0 V, R ON =280 Ω . μ m 8

  9. High-frequency characteristics V DS =0.6 V, V GS =0.4 V 4 h 21 V DS =0.6 V, V GS =0.4 V 40 f T = 688 GHz 3 MSG f max = 800 GHz Gains [dB] 2 Stability Factor (k) U g 20 1 k 0 0 9 10 11 12 10 10 10 10 Frequency [Hz] • Only transistor of any kind with both f T and f max > 680 GHz • Obtained at same bias point, V DS =0.6 V Kim, IEDM 2011 9

  10. f T vs. f max 300 600 700 = f avg = f  f 1500 m ax Kim, IEDM 2010 (f max =1.25 GHz) 1000 f max [GHz] TSC/MIT Kim, IEDM 2011 (This work) MIT/TSC HEMT 500 Fujitsu HEMT NGAS HEMT SNU HEMT UCSB HBT UIUC HBT TSC HBT HRL HBT 0 ETH HBT 0 200 400 600 800 1000 f T [GHz] • Record f T FET Best ‐ balanced f T and f max transistor • 10

  11. f t analysis G S D C gs C gd g mi v gs R S R D g oi • First ‐ order f T expression for HEMT: 11

  12. Break out extrinsic capacitances G S D • Capacitance components: 12

  13. Delay time analysis • Delay time: • Components of delay time: Intrinsic delay (transit time) Extrinsic delay Parasitic delay 13

  14. Extraction of parasitic capacitances • Need devices with different L g • Bias them at same V GS overdrive around peak f T point • Extract small ‐ signal equivalent circuit models • Study L g scaling behavior of C gs and C gd V DS = 0.6 V V GS - V T = 0.3V 2000 C gs C gs , C gd [fF/mm] C gs_ext 1000 C gd_ext C gd 0 0 100 200 L g [nm] Kim, IEDM 2011 14

  15. Delay components of L g = 40 nm I nGaAs HEMT Delay time from f T : ~231 fs yields <v e >=5x10 7 cm/s • Intrinsic delay: ~81 fs • Extrinsic delay: ~99 fs most significant • Parasitic delay: ~50 fs • Unaccounted: ~9 fs Kim, IEDM 2011 15

  16. Scaling of delay components 600 V DS = 0.6 V  Transit V GS - V T = 0.3V 400 Delays [fs] 200  ext  par 0 0 100 200 L g [nm]  ext and  par do not scale, become dominant for L g < 50 nm 16

  17. Scaling of small-signal components V DS = 0.6 V V GS - V T = 0.3V 2000 C gs C gs , C gd [fF/mm] C gs_ext 1000 C gd_ext C gd 0 0 100 200 L g [nm] As L g ↓: do not scale do not scale ↑ ↓ 17

  18. 3. The path to THz operation • Intrinsic delay ↓  L g ↓ • Extrinsic delay ↓ :  C gsext , C gdext ↓  gate engineering  g mi ↑  harmonious scaling • Parasitic delay ↓ :  R S +R D ↓  S/D engineering  g oi /g mi ↓  harmonious scaling 18

  19. How to reach f t = 1 THz? 1200 30% reduction 1 THz 1000 in all the parasitics 800 600 f T [GHz] V DS = 0.6 V 400 Measured f T Modeled f T Model Projection 200 100 30 L g [nm] f T = 1 THz feasible by:  scaling to L g ≈ 25 nm  ~30% parasitic reduction 19

  20. Approach to R S + R D ↓ : self-aligned process Kim, IEDM 2010 Waldron, TED 2010 1.0 VGS = 0.5 V L g =50 nm L side =100 nm 0.4 V 0.8 0.3 V 0.6 I D [mA/  m] 0.2 V 0.4 0.1 V 0.2 0 V 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 V DS [V] • Dry ‐ etched Mo contacts: R c = 7 Ω . μ m • L g =50 nm, R ON =290 Ω . μ m, g mpk =2.2 mS/ μ m @ V DS =0.5 V 20

  21. L g = 60 nm self-aligned I n 0.7 Ga 0.3 As HEMT L g =60 nm 4 Measured data Modeled data V GS = 0.2 V, V DS = 0.6 V H 21 40 H 21 , MAG/MSG and U g [dB] 3 f T =595 GHz f max =680 GHz U g 2 K 20 MAG/MSG 1 K 0 0 1 10 100 1000 Frequency [GHz] Kim, IEDM 2010 Highest f T and f max of any FET at L g  60 nm 21

  22. L g = 30 nm self-aligned I nGaAs MOSFET with L side ~ 30 nm Lin, IEDM 2012 V gs = -0.2 to 0.5 V in 0.1 V step 600 R on =475  m (at V gs =0.7 V) L g = 30 nm I d (  A/  m) 400 200 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) L side ~30 nm g mpk =1.4 mS/ μ m R ON =475 Ω .µm  access region design critical! 22

  23. Regrown source and drain regions L ch =55 nm InGaAs MOSFET: R ON =199 Ω .µm Egard, IEDM 2011 L ch =30 nm InGaAs MOSFET: R ON =133 Ω .µm Zhou, EDL 2012 23

  24. Harmonious scaling: aspect ratio of record f t devices Channel Aspect Ratio: L g /t ch Insulator Aspect Ratio: L g /t ins Dimensions verified by XTEM • Channel AR: 3 ~ 4 For L g =25 nm:  t ch ~ 7 nm, t ins ~ 3 nm • Insulator AR: 7 ~ 10 24

  25. I ssues in channel scaling Deep channel thickness scaling degrades performance:  R S ↑  f T ↓ InAs HEMT, L side = 80 nm, t ins = 5 nm Noticeable mobility degradation: t ch =10 nm  µ e =13,500 cm 2 /V.s t ch =5 nm  µ e =9,950 cm 2 /V.s Kim, IPRM 2010 25

  26. v inj - impact of channel thickness 4 VDS = 0.5 V 2 /V-s  n ~ 13,000 cm t ins = 4 nm & t ch = 10 nm 2 /V-s  n ~ 9,950 cm 3 Kim, IEDM 2009 t ins = 3 nm & t ch = 5 nm 7 cm/s] 2 v inj [10 Strain-Si 1 Si nFETs (VDS = 1.1 ~ 1.3 V) 0 10 100 L g [nm] In thin ‐ channel devices: • Long L g : v inj decreases right along with  e (~23%) • Short L g : v inj relatively unaffected  consistent with near ballistic transport 26

  27. Channel transport enhancement through strain engineering InAs 300 K quantum ‐ well mobility vs. lattice constant: InAs InSb InP AlSb Independent control of channel strain and composition:  new possibilities for channel design 27

  28. I ssues in barrier scaling Want to scale L g without degrading g m or g o In 0.7 Ga 0.3 As HEMTs t ch =13 nm, L side =150 nm Kim, TED 2008 For harmonious scaling: as L g ↓  t ins ↓ 28

  29. Limit to HEMT barrier scaling: gate leakage current InAlAs/InGaAs HEMTs L g =40 nm V DS =0.5 V At L g =40 nm, modern HEMTs are at the limit of scaling! 29

  30. Limit to HEMT barrier scaling: gate leakage current InAlAs/InGaAs HEMTs 10 ‐ 5 x! Al 2 O 3 (3 nm)/InP (2 nm)/InGaAs L g =40 nm MOSFET V DS =0.5 V V DS =0.5 V Need high ‐ K gate dielectric: HEMT  MOSFET! 30

  31. I I I -V MOSFET: deep scaling possible InP (1 nm) + Al 2 O 3 (0.4 nm) + HfO 2 (2 nm)  EOT ~ 0.9 nm [ vs. 4 nm InAlAs  EOT = 1.3 nm] Equivalent oxide thickness  should bring us to L g =20 nm V ds =0.5 and 0.05 V -6 10 L g = 300  m Long ‐ channel -7 10 I d (A/  m) In 0.53 Ga 0.47 As MOSFET -8 10 μ e ≈ 2700 cm 2 /V.s -9 10 S=69 mV/dec -10 10 Lin, IEDM 2012 -11 10 -0.2 0.0 0.2 0.4 0.6 V gs (V) S=69 mV/dec  Low D it at MOS interface demonstrated 31

  32. High-frequency I nGaAs MOSFETs L g =60 nm InGaAs MOSFET with L side ~5 nm, EOT=1.2 nm Kim, APL 2012 L g =60 nm V DS =0.5 V f t =370 GHz, R ON =220 Ω .µm, g m =2.0 mS/µm, S=110 mV/dec 32

  33. THz MOSFETs: possible designs n + n + Etched S/D QW ‐ MOSFET Regrown S/D QW ‐ MOSFET Gate ‐ all ‐ around FinFET nanowire FET 33

  34. Conclusions • THz III-V FETs just around the corner  need to reduce parasitics  need to scale harmoniously • Exploding interest on III-V CMOS: huge opportunity for THz III-V electronics!  fast technology progress  new processes and tools  fundamental research on transport, interface, etc.  Si as substrate for THz electronics 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend