30 nm i n 0 7 ga 0 3 as i nverted type hemt with reduced
play

30 nm I n 0.7 Ga 0.3 As I nverted-type HEMT with Reduced Gate - PowerPoint PPT Presentation

30 nm I n 0.7 Ga 0.3 As I nverted-type HEMT with Reduced Gate Leakage Current g for Logic Applications T.-W. Kim , D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne Scientific Sponsors: Intel


  1. 30 nm I n 0.7 Ga 0.3 As I nverted-type HEMT with Reduced Gate Leakage Current g for Logic Applications T.-W. Kim , D.-H. Kim* and J. A. del Alamo Microsystems Technology Laboratories MIT Presently with Teledyne Scientific Sponsors: Intel & FCRP-MSD IEDM December 7-9, 2009 Fabrication: MTL, NSL, SEBL Ackno ledgements MBE Technolog for epi Acknowledgements:MBE Technology for epi wafer afer UNIST in Korea for TEM analysis 1

  2. Outline 1. Introduction 2. Device Technology 3. Logic Characteristics 4. Benchmarking with normal HEMT and Si CMOS Si CMOS 5 Conclusions 5. Conclusions 2

  3. I nsulator Scaling in I I I -V HEMTs Motivation : - III-V HEMT: Model system for future III-V logic FETs M ti ti f f - HEMT scaling: L g   t ins  - Problem: t ins   I G    -3 10 t ins = 10 nm t ins = 7 nm -4 10 t ins = 4 nm I D -5 10 t ins = 4 nm InAlAs/InGaAs HEMT  m] -6 10 L g L g = 30 nm 30 nm I D , I G [A/  I I G <del Alamo, TWHM 09> -7 10 7 nm -8 10 10 nm -9 10 V DS = 0.5 V -10 10 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 V GS [V] • Inverted HEMT design: reduced I G 3

  4. Concept of I nverted HEMT <Normal HEMT > <Normal HEMT > <Inverted HEMT > <Inverted HEMT > Gate Cap. Cap. Insulator Insulator Si  Channel Channel doping Barrier Barrier 0.6 3.0 0.6 3.0 Normal HEMT V GS = +0.3 V Inverted HEMT V GS = +0.25 V 2.5 2.5 2.5 0 4 0.4 0.4 0 4 Electron density [ E Electron density 2.0 2.0 Profiles [eV] Profiles [eV] 0.2 0.2 1.5 1.5 0.0 0.0 0 0 0.0 y [x 10 CB P CB P [x 10 1.0 1.0 18 /cm ns,ch = 18 /cm n s,ch = -0.2 -0.2 0.5 0.5 3 ] 1.6 X 1012/cm2 1.5 X 10 12 /cm 2 3 ] -0.4 0.0 -0.4 0.0 0 0 10 10 20 20 30 30 40 40 50 50 0 10 20 30 40 50 Vertical depth [nm] Vertical depth [nm] • Lower leakage current due to higher barrier under gate 4

  5. Trade-off of I nverted HEMT    : Access region  : Contact region 0.8 4 0.8 4 0.6 0.6 Electron Den 3 Electron De 3 0.4 0.4 iles [eV] ile [eV] 0 2 0.2 2 2 0 2 0.2 2 2 ensity [10 nsity [10 CB Profi CB Prof 0.0 0.0 1 1 18 /cm 18 /cm n s,ch = n s,ch = -0.2 -0.2 3 ] 3 ] 0 68 x 10 12 /cm 2 0.6X10 12 /cm 2 0 6X10 12 / 2 0.68 x 10 /cm -0.4 0 -0.4 0 0 10 20 30 40 50 60 70 0 20 40 60 80 100 Vertical depth [nm] Vertical depth [nm] n s,ch ~ 3 x 10 12 /cm 2 for Normal HEMT n s,ch ~ 2.7 x 10 12 /cm 2 for Normal HEMT • Problem: - low n s in access region - large energy barrier under contact region 5

  6. New Approach Gate New  doping layer    : Access region  : Contact region 0.6 4 0.6 4 0.4 0.4 Electron Dens Electron Dens 3 3 ofiles [eV] ofile [eV] 0.2 0.2 2 2 CB Pro sity [10 CB Pro sity [10 0.0 0.0 18 /cm 1 1 18 /cm n s,ch = -0.2 -0.2 n s,ch = 3 ] 2.7X10 12 /cm 2 3 ] 2 4 x 10 12 /cm 2 2.4 x 10 12 /cm 2 2.7X10 /cm -0.4 0 -0.4 0 0 20 40 60 80 0 10 20 30 40 50 60 Vertical depth [nm] Vertical depth [nm] n s,ch ~ 3 x 10 12 /cm 2 for Normal HEMT n s,ch ~ 2.7 x 10 12 /cm 2 for Normal HEMT • High n s in access region • Low barrier in contact region 6

  7. Epitaxial Heterostructure n+ In 0.65 Ga 0.35 As 5 nm Cap n+ In 0.53 Ga 0.47 As 15 nm 0.53 0.47 n+ In 0.52 Al 0.48 As 15 nm Etch stopper InP 6 nm S  dop g Si  -doping In 0.52 Al 0.48 As 2 nm Barrier In 0.52 Al 0.48 As 8 nm In In 0.53 Ga 0.47 As 2 nm Ga As 2 nm Channel In 0.7 Ga 0.3 As 8 nm In 0.53 Ga 0.47 As 3 nm Back Barrier In 0.52 Al 0.48 As 5 nm  n,Hall = 9,800 cm 2 /V-sec + Buffer In 0.52 Al 0.48 As Substrate S. I. InP 7

  8. Device Technology S D Oxide L side L side Cap Cap Etch stopper L g Barrier t ins ins - Triple-recess process t ch Channel - t ins = 4 nm, L side = 80 nm - Gate: Ti/Pt/Au Buffer Buffer - L g : 30 - 130 nm 8

  9. Output & Transfer Char. : L G = 30 nm 0.8 0.6 V DS =0.5 V 1400 0.5 V V GS =0.3 V =0 3 V 1200 1200 0.6 0.4 1000 0.2 G M [mS mA/  m] mA/  m] 800 0.4 0.1 0.3 S/mm] I D [m I D [m 600 0 0.2 400 0.2 -0.1 0.1 200 00 -0.2 0.0 0 0.0 -0.4 -0.2 0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.8 1.0 V GS [V] V DS [V] Good I D saturation, pinch-off behavior G G m = 1.27 S/mm @ V DS =0.5 V 1 27 S/ @ V 0 5 V 9

  10. Subthreshold Char. : L g = 30 nm -3 3 10 I D -4 10 -5 10 V DS = 0.05 V [A/  m] -6 10 V DS = 0.5 V I D & I G [ -7 10 -8 10 I G -9 10 -10 10 -0.6 -0 6 -0 4 -0.4 -0 2 -0.2 0 0 0.0 0.2 0 2 0 4 0.4 V GS [V] • DIBL = 118 mV/V, S = 83 mV/dec. • Excellent I OFF  I ON /I OFF = 3.9 X 10 4 for V DS = 0.5 V 10

  11. f T & f max Char. : L g = 30 nm 40 30 U H 21 ] Gain [dB] MAG/MSG 20 f max = 550 GHz 10 V GS =0.2 V f T = 500 GHz V DS 0.8 V V DS =0.8 V 0 9 10 11 12 10 10 10 10 Frequency [Hz] f T =500 GHz & f max =550 GHz Highest f T & f max reported on Inverted HEMTs 11

  12. I nverted vs. Normal HEMTs: I G -3 10 V DS = 0.5 V I D Inverted HEMT Normal HEMT V DS = 50 mV -4 4 DS 10 V DS = 0.5 V L g = 30 nm -5 V DS = 50 mV 10 m] & I G [A/  m -6 6 10 V DS = 50 mV I G -7 10 V DS = 0.5 V I D -8 10 I G -9 10 -10 10 -0.50 -0.25 0.00 0.25 V GS [V] <D -H KIM IPRM 09> <D.-H. KIM IPRM 09> Inverted HEMT:  ~100 X less I G than normal HEMT 12

  13. I nverted vs. Normal HEMTs: I ON / I OFF vs. L g -2 7 10 10 Inverted HEMT ION Normal HEMT -3 10 6 6 10 -4 10 -5 A/  m] 10 5 10 I ON & I OFF [A -6 6 I ON /I OFF I 10 4 10 -7 10 -8 10 3 3 10 -9 10 IOFF VDS = 0.5 V -10 2 10 10 20 40 60 80 100 120 140 L g [nm] Inverted HEMT :  Excellent I ON /I OFF scalability down to L g = 30 nm 13

  14. I nverted vs. Normal HEMTs: g mi 2 /V-s Inverted HEMT :  n,Hall = 9,800 cm 2 /V-s Normal HEMT  n,Hall = 11,000 cm 3.2 2.8 g mi from S-parameters g from S parameters m] & g m,ext [S/mm 2.4 2 4 g mi 2.0 g g m,ext t g mi & 1.6 1.2 VDS=0.5V VDS=0 5V 10 100 Gate Length [nm] Inverted HEMTs: Inverted HEMTs: - Lower values of g mi : from reduced  and velocity - Better g mi scalability down to 30 nm 14

  15. I nverted vs. Normal HEMTs: R s <Using gate current injection technique> 0.40 Inverted HEMT Inverted HEMT Normal HEMT 0.36 R S =0.27 ohm.mm R sh =100 ohm/sq 0 32 0.32 * [ohm.mm] ] 0.28 R s R 0.24 R sh =70 ohm/sq R S =0.225 ohm.mm R S 0.225 ohm.mm 0.20 0 20 0 40 80 120 160 L g [nm] Higher R s in inverted HEMT Why?  Lower n s in access region, higher R c 15

  16. I nverted vs. Normal HEMTs: f T and f max Inverted HEMT 700 0.30 Normal HEMT Inverted HEMT 600 600 Normal HEMT ce g o [S/mm] 0.25 f T 500 f T 0.20 GHz] f max 400 ut conductanc f T & f max [G 0.15 300 f max 0.10 200 Outpu 0.05 100 L g = 30 nm V DS = 0.8 V V DS = 0.8 V L g = 30 nm 0.00 0 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 V V GS [V] [V] V V GS [V] [V] Inverted HEMTs:   Lower f & higher f Lower f T & higher f max  Improved g o : possibly due to lower n s in access region 16

  17. Benchmarking : SS & DI BL 400 180 Si FETs (IEDM) Si FETs (IEDM) Inverted HEMT pe [mV/dec] ] Inverted HEMT I t d HEMT 160 Normal HEMT Normal HEMT 300 140 V/V] 200 200 hreshold Slo 120 DIBL [mV 100 100 Subth 80 60 0 10 100 10 100 Gate Length [nm] Gate Length [nm] Gate Length [nm] Gate Length [nm] Excellent SCE of inverted HEMT 17 17

  18. Benchmarking : I ON vs. I Leak 1   I ( I I ) -3 x 10 leak OFF G , ON 2 0.5 V DD = 0.5 V InGaAs normal HEMT L g = 30 nm g 65 nm HP-CMOS (L g = 35 nm) 0.4 InGaAs Inverted HEMT L g = 30 nm 0.3 65 nm LP-CMOS (L g = 55nm) N [A/  m] 0 2 0.2 I ON 0.1 0.0 -9 -8 -7 -6 10 10 10 10 I leak [A/  m]  At I leak = 100 nA/ μ m, 1.3X higher I ON than 65 nm HP CMOS 18

  19. Benchmarking : CV/ I vs. L g 10 Inverted HEMTs Normal HEMTs AY [psec] 1 1 GATE DELA I In 0.7 Ga 0.3 As HEMTs G A HEMT (V DD = 0.5V) G Si NMOSFETs (V DD = 1.1~1.3V) 0.1 0 1 2 3 10 10 10 10 Gate Length, L g [nm] Inverted HEMT :  Comparable Gate delay with L g but at lower V DD < Ref. : Chau et al. (T-Nano 2005) > 19

  20. Conclusions • Inverted InGaAs HEMT – S Scaling benefit: li b fit • Reduced I g  allows for further L g scaling – At 30 At 30 nm, inverted HEMTs exhibit excellent characteristics: i t d HEMT hibit ll t h t i ti DIBL < 120 mV/V, S < 85 mV/dec and I ON /I OFF ~ 4 x 10 4 • f > 500 GHz and f f T > 500 GHz and f max > 550 GHz, CV/I ~ 1 psec > 550 GHz CV/I ~ 1 psec • • Inverted InGaAs HEMT: promising layer structure for future Inverted InGaAs HEMT: promising layer structure for future • high-K/III-V MOSFET 20 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend