trapping vs permanent d degradation in gan hemts d ti i g
play

Trapping vs. Permanent D Degradation in GaN HEMTs d ti i G N HEMT - PowerPoint PPT Presentation

Trapping vs. Permanent D Degradation in GaN HEMTs d ti i G N HEMT Jungwoo Joh and Jess A. del Alamo Massachusetts Institute of Technology Acknowledgements: TriQuint Semiconductor ARL (DARPA WBGS program) ONR (DRIFT MURI program)


  1. Trapping vs. Permanent D Degradation in GaN HEMTs d ti i G N HEMT Jungwoo Joh and Jesús A. del Alamo Massachusetts Institute of Technology Acknowledgements: TriQuint Semiconductor ARL (DARPA WBGS program) ONR (DRIFT ‐ MURI program)

  2. Motivation Motivation • GaN HEMT reliability: big concern GaN HEMT reliability: big concern • Performance degradation at high voltage: – Trapping ‐ related (recoverable) T i l t d ( bl ) – Permanent (non ‐ recoverable) G S D _ _ _ _ _ _ _ _ AlGaN _ _ _ _ _ _ _ _ GaN

  3. Experimental: GaN HEMT Experimental: GaN HEMT Gate Gate Source Drain SiN GaN Cap AlGaN 2DEG GaN SiC Substrate Standard device with integrated field plate : • L =0 25 um W=2x25 um • L G =0.25 um, W=2x25 um • Fabricated by TriQuint Semiconductor 3

  4. Electrical Stress and Characterization Electrical Stress and Characterization START Comprehensive but fast: Coarse characterization (<15 sec) Fine characterization (~30 sec) Characterization Trap analysis (30 min) Frequent : I Dmax , R S , R D , I Goff , V T … Coarse characteri ation e er 1 2 mins Coarse characterization: every 1 ‐ 2 mins Trapping Analysis Fine characterization: before and after stress and at important ponits Benign : Benign : Electrical Stress l l Both sets of measurements to produce a V DS , V GS (or I D ) change smaller than 2% on any extracted parameter after 100 executions 4

  5. Permanent vs. Trapping Permanent vs. Trapping stress recovery 1 V =0 V DS =0 V GS = ‐ 30 V permanent degradation (0) total (apparent) 0.9 Dmax /I Dmax degradation 0 8 0.8 I D t trapping i degradation I Dmax : V DS =5 V V GS =2 V 0 7 0.7 88 days 0 30 60 recovery Time (min) 13 % permanent degradation + 15 % trapping degradation 5

  6. OFF ‐ state Stress @ 100 C OFF state Stress @ 100 C V GS = ‐ 5 V, V DS =40 V @ 100 C 1.2 1 2 1 E+03 1.E+03 100 C V DS 1.E+02 V GS R/R(0) R D 1.1 1.E+01 mm) G S D R S ax /I Dmax (0), R S I Goff | (mA/m AlGaN 1.E+00 1 1.E-01 2DEG I Goff 1.E-02 1 E-02 Goff I Dma 0.9 0 9 | GaN 1.E-03 I Dmax 0.8 1.E-04 0 500 1000 1500 2000 2500 At these points, Time (min) I Goff : V DS =0.1 V trapping analysis was V GS = ‐ 5 V performed at 25 C. Fast and sharp I G degradation Slower I Dmax & R D degradation 6

  7. Transient after V DS =0 pulse Transient after V DS 0 pulse trapping pulse ( 1 s V GS = ‐ 10 V, V DS =0 V) @ t=0 - @ 9 5 9.5 uncollapsed I Dlin (before) stress time=0 min permanent 9 degradation 5 5 uncollapsed I Dlin (after) uncollapsedI (after) 8.5 8 5 I Din (mA) 15 8 35 current collapse : 7.5 75 7 5 trapping degradation 155 7 25 C After 315 min 6 5 6.5 collapsed I Dlin (after) -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 t (sec) I Dlin (V GS =1, V DS =0.5 V) transient after applying trapping pulse Current collapse increases up to 300 min and saturates. 7

  8. Trapping & Permanent Degradation Trapping & Permanent Degradation 30 1 zed) (normaliz apse (%) trapping degradation 20 0.98 rrent colla psed I Dlin permanent 10 0.96 Permanent degradation: degradation Uncollap uncollapsed I Dlin ll d I Cu Trapping degradation: 0 0.94 Current collapse p 0 500 1000 1500 2000 2500 uncol. I Dlin – col. I Dlin = Time (min) uncollapsed I Dlin Trapping degradation mostly saturates after 300 min. Permanent degradation keeps increasing. 8

  9. Impact of Temperature Impact of Temperature OFF ‐ state (100 C) ( ) OFF ‐ state (150 C) ( ) 40 1 40 1 normalized) trapping degradation pse (%) n (norm) pse (%) trapping 0.98 0.98 30 30 degradation llapsed I Dlin (n Current collap 0 96 0.96 0 96 0.96 Current collap collapsed I Dlin 20 20 0.94 permanent 0.94 permanent degradation 10 degradation 10 0.92 0.92 C C Unc Unco 0 0.9 0 0.9 0 500 1000 1500 2000 2500 0 500 1000 1500 Time (min) Time (min) More degradation in trapping & permanent at higher T  Both degradations are thermally activated. Increase in current collapse saturates faster than at 100 C. 9

  10. Hot ‐ electron Stress Hot electron Stress V GS =0, V DS =40 V (I D ~800 mA/mm) Room T (T j 235 C) Room T (T j ~235 C) V DS R D V GS G S D AlGaN 2DEG R S Hot electrons! I Goff Goff GaN I Dmax Much less degradation in I G 10

  11. OFF ‐ state vs. Hot ‐ electron Stress OFF state vs. Hot electron Stress OFF ‐ state (100 C) Hot ‐ electron (RT, T j ~235 C) 30 1 (normalized) 30 1 trapping I Dlin (norm) degradation apse (%) apse (%) 20 0.95 20 0.95 p permanent Current colla Current colla Uncollapsed ollapsed I Dlin permanent degradation degradation 10 0.9 10 0.9 Unco trapping degradation t i d d ti 0 0.85 0 0.85 0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 Time (min) Time (min) More permanent degradation than OFF ‐ state. Less current collapse increase for V DS =0 pulse.  less trap formation in high ‐ power stress 11

  12. Summary Summary • During all stress modes: During all stress modes: 1. Very fast I G degradation (few minutes) 2. Trapping ‐ related degradation mostly saturates in pp g g y a short time (few hours) 3. Permanent degradation keeps increasing over time • OFF ‐ state: – More trapping degradation – Faster & more degradation at higher T. • Hot ‐ electron stress: – More permanent degradation 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend