total current collapse in high voltage gan mis hemts
play

Total current collapse in High Voltage GaN MIS HEMTs induced by - PowerPoint PPT Presentation

Total current collapse in High Voltage GaN MIS HEMTs induced by Zener trapping Donghyun Jin, J. Joh*, S. Krishnan*, N. Tipirneni*, S. Pendharkar* and J. A. del Alamo * Acknowledgement: SRC, ARPA-E, Samsung Fellowship 1 Current collapse or


  1. Total current collapse in High ‐ Voltage GaN MIS ‐ HEMTs induced by Zener trapping Donghyun Jin, J. Joh*, S. Krishnan*, N. Tipirneni*, S. Pendharkar* and J. A. del Alamo * Acknowledgement: SRC, ARPA-E, Samsung Fellowship 1

  2. Current collapse or dynamic ON ‐ resistance in GaN FETs • R ON depends on device history  After high V OFF , R ON ↑↑ • Big problem in power switching applications 2

  3. Multi field ‐ plate (FP) technology FP3 Non ‐ FP FP1 FP2 Multi ‐ FP G G D D AlGaN AlGaN GaN GaN • Key challenge for current collapse ↓↓ : Engineering electric ‐ field profile at high ‐ V in the gate ‐ to ‐ drain gap of GaN MIS ‐ HEMTs (Metal ‐ Insulator ‐ Semiconductor High ‐ Electron ‐ Mobility Transistors) → Mul � fi eld ‐ plate technology developed 3

  4. Multi field ‐ plate (FP) technology FP3 Non ‐ FP FP1 FP2 Multi ‐ FP V G < V T G G High ‐ V D D AlGaN AlGaN GaN GaN E ‐ field • In high ‐ V OFF ‐ state, Non ‐ FP → intense E ‐ fi eld peak → current collapse ↑↑ 4

  5. Multi field ‐ plate (FP) technology FP3 Non ‐ FP FP1 FP2 Multi ‐ FP V G < V T G G High ‐ V D V G < V T D High ‐ V AlGaN AlGaN GaN GaN E ‐ field E ‐ field • In high ‐ V OFF ‐ state, Non ‐ FP → intense E ‐ fi eld peak → current collapse ↑↑ Multi ‐ FP → depletion region extension and E ‐ fi eld peak ↓↓ → Effectiveness in current collapse? 5

  6. Current collapse at high V OFF GaN MIS ‐ HEMTs with multi ‐ FP (FP1,2,3): • OFF ‐ state step ‐ stress with V DS ↑ • Monitor I Dlin (equivalent to R ON ) I Dlin (V GS = 0 V, V DS = 0.2 V) V DS … 0.2 V t OFF ‐ state stress characterization V GS t 0 V … V T – 5 V 10 s at every step 6

  7. Current collapse at high V OFF GaN MIS ‐ HEMTs with multi ‐ FP (FP1,2,3): • OFF ‐ state step ‐ stress with V DS ↑ Current collapse • Monitor I Dlin (equivalent to R ON ) 1 V GS = V T – 5 V 0.8 I Dlin (V GS = 0 V, V DS = 0.2 V) I Dlin/ I Dlin (0) 0.6 V DS 0.4 … 0.2 R ON /R ON (0) >10 10 0.2 V t 0 OFF ‐ state stress 0 200 400 600 800 characterization V GS V DS_STRESS (V) t 0 V … • Total current collapse for V DS > 300 V V T – 5 V • R ON ↑↑ by > 10 10 by V DS = 720 V 10 s at every step 7

  8. Questions to answer • Is current collapse recoverable? • Where in the device does this happen? • What are the dynamics of this process? • What is the mechanism responsible? • How to mitigate/eliminate? 8

  9. Current collapse recovery? • 6 consecutive measurements • UV exposure + thermal treatment (180 min at 200 o C) in between 1 OFF ‐ state stress: V GS =V T ‐ 5 V 0.8 2 nd I Dlin /I Dlin (0) 3 rd 0.6 1 st run 4 th 0.4 5 th 6 th 0.2 0 0 100 200 300 400 V DS_STRESS (V) Current collapse fully recoverable  trapping! 9

  10. Lateral extent of current blockage? Change in output characteristics after V DS =300 V stress for 300 s: 600 V GS –V T = 7 V 5 V 3 V Virgin 14 After STRESS 500 12 I D (mA/mm) V GS –V T = 7 V 400 I D (mA/mm) 10 5 V 1 V 8 300 6 3 V 200 After 300 V 4 STRESS 1 V 100 2 -1V 0 0 0 3 6 9 12 15 0 3 6 9 12 15 V DS (V) V DS (V) Current collapse for low V DS but I D flows again at high V DS  punchthrough ‐ like characteristics  current blockage is short along channel direction 10

  11. Change in V T and terminal currents? Evolution of subthreshold characteristics and 4 terminal currents: 1.E+02 Virgin 100 V 1.E+02 V DS = 0.25 V 200 V 1.E+01 I STRESS (nA/mm) 1.E+00 I D 300 V I D (mA/mm) 1.E+00 1.E-02 360 V |I B | V T0 1.E-01 1.E-04 |I S | 400 V 1.E-02 1.E-06 500 V 1.E-03 |I G | 1.E-08 1.E-04 1.E-10 0 100 200 300 400 -9.25 -2 -7.25 0 -5.25 2 -3.25 4 -1.25 6 V DS_STRESS (V) V GS -V T0 (V) • No change in V T  current blockage in extrinsic device region • At the onset of severe trapping, all currents are negligible 11

  12. Impact of device geometry? 1 1 L GD L FP1 longer FP1 0.8 0.8 standard I Dlin /I Dlin (0) I Dlin /I Dlin (0) standard 0.6 0.6 long long 0.4 short 0.4 short 0.2 0.2 0 0 0 100 200 300 400 0 100 200 300 400 (a) (b) V DS_STRESS (V) V DS_STRESS (V) 1 1 L FP2 L FP3 FP2 FP3 0.8 0.8 standard I Dlin /I Dlin (0) I Dlin /I Dlin (0) long 0.6 0.6 short long 0.4 0.4 standard short 0.2 0.2 0 0 0 100 200 300 400 0 100 200 300 400 (d) (c) V DS_STRESS (V) V DS_STRESS (V) Current collapse independent of L GD and geometry of field ‐ plates 12

  13. Current blockage location? Capacitance ‐ voltage characteristics of virgin device: FP1 1 V GS = V T – 5 V 0.8 C DG /C DG (0) FP2 0.6 0.4 FP3 0.2 0 0 100 200 300 400 V DS (V) Channel under field plates fully depleted by V DS =50 V  For V DS >50 V, electric field peaks in channel under edge of FP3  Current blockage under edge of FP3 13

  14. Role of temperature? OFF ‐ state step ‐ stress at different T: 1 1.E+00 1.E+00 I D I G I D ( μ A/mm) 200 °C 1.E-01 0.9 V GS = V T – 5 V 1.E-01 100°C I G ( μ A/mm) 1.E-02 1.E-02 0.8 100 °C 200 °C 1.E-03 I Dlin /I Dlin (0) 1.E-03 0.7 100 °C 25 °C 1.E-04 1.E-04 25 °C 0.6 1.E-05 1.E-05 25°C 0.5 1.E-06 1.E-06 0.4 0 100 200 300 400 1.E+00 0 100 200 300 400 1.E+00 200 °C I S I B 200°C VDS_STRESS (V) 1.E-01 0.3 1.E-01 VDS_STRESS (V) I S ( μ A/mm) I B ( μ A/mm) 200 °C 100 °C 1.E-02 1.E-02 0.2 1.E-03 100 °C 1.E-03 0.1 1.E-04 25 °C 1.E-04 0 1.E-05 1.E-05 25 °C 0 100 200 300 400 1.E-06 1.E-06 0 100 200 300 400 V DS_STRESS (V) 0 100 200 300 400 (a) (b) V DS_STRESS (V) V DS_STRESS (V) • Terminal currents ↑↑ as T ↑  Not source of trapping • Total current collapse independent of T  Trapping through tunneling process 14

  15. Dynamics of trapping Zener tunneling law: Evolution of I Dlin during trapping process: � � � ln τ � � �� � �� � � � � 1 � ���� V GS = V T – 5 V 1000 0.8 I Dlin /I Dlin (0)  0.6 100 τ (sec) 0.4 140 V 160 V 150 V 10 170 V 0.2 E T – E V ≈ 1 eV 180 V 0 1 0 4 8 10 2 6 0 2 4 6 8 10 0.3 0.32 0.34 0.36 Time (min) 1/E PEAK (cm/MV) • Trapping accelerated as V DS_stress ↑ • Characteristic trapping time exhibits Zener ‐ like dependence on peak electric field under FP3 edge (from simulations) 15

  16. Dynamics of thermal detrapping Evolution of I Dlin during detrapping at different temperatures: OFF ‐ state stress: V DS_stress = 200 V, t= 600 sec 18.5 18 ln(T 2 t) (K 2 s) 17.5 17 E A = 0.63 eV 16.5 16 24 26 28 30 1/kT (eV -1 ) • Detrapping accelerated as T ↑ • Activation energy: E A = 0.63 eV 16

  17. Dynamics of UV ‐ enhanced detrapping Evolution of I Dlin during detrapping under UV exposure (300K): OFF ‐ state stress: Stress Recovery V DS_stress =300 V, t=3 min 3.5 eV 1 0.8 4.1 eV I Dlin /I Dlin (0) 0.6 3.1 eV 0.4 0.2 2.8 eV 0 Dark 0 5 10 15 20 Time (min) Detrapping accelerated by UV with E h  > 2.8 eV 17

  18. Electric field simulations Silvaco simulations of electric field at top surface of AlGaN barrier from gate to drain: V GS = V T – 5 V 7 E PEAK 7 6 E PEAK (MV/cm) 6 E-field (MV/cm) 5 5 4 4 3 1000 V 3 2 800 V 2 600 V 1 1 400 V 100 V 0 200 V 0 0 200 400 600 800 1000 Gate FP1 FP2 FP3 4 9 14 19 V DS (V) Space • In OFF ‐ state for V DS > 100 V, field peaks under edge of FP3 • E PEAK increases with V DS • At V DS =200 V, E PEAK = 3.4 MV/cm 18

  19. Summary of key findings • Total current collapse after high V OFF bias: – Fully recoverable – Triggered and accelerated by electric field – Follows Zener ‐ like dependence with E T –E V = 1.0 eV – Trapped region very short and located under FP3 edge – No effect from variations of L GD and FPs lengths – Temperature independent trapping process – Detrapping enhanced by UV with E h  > 2.8 eV – Detrapping enhanced by temperature with E A = 0.63 eV 19

  20. Mechanism for total current collapse Observations consistent with: • Field ‐ induced trapping process  Zener trapping • Takes place in narrow region under edge of FP3 • Electrons from valence band tunnel to traps • Trapped electrons lift bands in ON state and create blockage At high ‐ V OFF After high ‐ V OFF 20

  21. Energy location of traps? • From Zener trapping calculations: E T ‐ E V ≈ 1.0 eV • From UV detrapping experiments: E h  ≈ 2.8 eV • For reference: E g (GaN) = 3.4 eV, E g (Al 0.2 Ga 0.8 N) = 3.8 eV 21

  22. Thermal detrapping with E A =0.63 eV? Thermal detrapping E a =0.63 eV seems inconsistent with energy picture… If blockage region is short, thermal detrapping possible with E < E C ‐ E T 22

  23. Physical origin of traps? • Trap energy consistent with traps responsible for yellow luminescence in AlGaN and GaN. • In GaN: E C ‐ E YB = 2.5 eV (Calleja, PRB 1997) • In Al 0.2 Ga 0.8 N: E C ‐ E YB = 2.8 eV (Hang, JAP 2001) • Yellow luminescence traps attributed to C in N site (Lyons, APL 2010) Mitigation: carefully manage C doping in buffer and migration to AlGaN barrier 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend