time evolution of electrical degradation under high
play

Time Evolution of Electrical Degradation under High-Voltage Stress - PowerPoint PPT Presentation

Time Evolution of Electrical Degradation under High-Voltage Stress in GaN HEMTs Jungwoo Joh and Jess A. del Alamo Microsystems Technology Laboratories, MIT Acknowledgements: ARL (DARPA WBGS program) ONR (DRIFT-MURI) TriQuint Semiconductor


  1. Time Evolution of Electrical Degradation under High-Voltage Stress in GaN HEMTs Jungwoo Joh and Jesús A. del Alamo Microsystems Technology Laboratories, MIT Acknowledgements: ARL (DARPA WBGS program) ONR (DRIFT-MURI) TriQuint Semiconductor

  2. Purpose • GaN HEMT Reliability: big concern – RF power degradation – I D ↓ , R D ↑ , I G ↑ , ∆ V T … • Goal: understand degradation mechanism 0 -0.2 ∆ P out (dB) -0.4 -0.6 RF stress 10 GHz,V D =28 V -0.8 I DQ =150 mA/mm -1 P in =23 dBm 0 5 10 15 P out =33.7 dBm 2/20 Time (hr)

  3. Outline • Background • Project goal • Experimental – Procedure – Results • Discussion • Conclusions 3/20

  4. High Voltage Degradation in GaN HEMTs 1.2 1.E+01 OFF-state, V GS =-10 V V DS 1.15 1.E+00 V GS =-10 V I Dmax /I Dmax (0), R/R(0) 1.1 1.E-01 R D |I Goff | (A/mm) G S D R S 1.05 1.E-02 AlGaN 1 1.E-03 2DEG 0.95 1.E-04 I Dmax I Goff 0.9 1.E-05 GaN V crit 0.85 1.E-06 Joh, EDL 2008 10 20 30 40 50 V DGstress (V) I Dmax : V DS =5 V, V GS =2 V I Goff : V DS =0.1 V, V GS =-5 V I D , R D , and I G start to degrade beyond critical voltage (V crit ) (+ trapping behavior – current collapse) Common physical origin in I D and I G degradation 4/20

  5. Structural Degradation Cross-section Plan-view 1. V stress ~V crit : Gate SiN Groove formation in GaN cap AlGaN GaN 2. V stress >V crit : Pit formation in AlGaN barrier 3. V stress >>V crit : Pit growth (to AlGaN/GaN interface) and merge + crack formation 5/20 Joh, MR 2010 Makaram, APL 2010

  6. Trapping vs. Permanent stress recovery 1 V DS =0 V GS = ‐ 30 V permanent degradation I Dmax /I Dmax (0) total (apparent) 0.9 degradation 0.8 trapping degradation 0.7 88 days 0 30 60 recovery Time (min) 13 % permanent degradation + 15 % trapping degradation 6/20

  7. Project Goal • Investigate time evolution of degradation and correlate with structural degradation 7/20 Meneghesso, IJMWT 2010 Marcon, IEDM 2010

  8. Experimental Procedure • Detrapping step to flush trapped START electrons quickly • Benign device characterization: Detrapping • Full I D -V DS , I D -V GS curves Full Characterization (DC, CC) • I D transient measurement: T base =3 0°C current collapse, detrapping time Electrical Stress constant T stress • Performed at 30 °C End? • Stress conditions: NO YES • OFF-state: V DS =40 V, V GS =-7 V END: detrapping + • T stress =75–200 °C Full characterization 8/20

  9. Gate Current and V T -4 -4 0.25 0.25 10 10 Stress: V GS = ‐ 7 V and V DS =40 V Stress: V GS = ‐ 7 V and V DS =40 V 125 °C 125 °C 0.2 0.2 -5 -5 10 10 I Goff  I Goff  0.15 0.15 |I Goff | (A) |I Goff | (A) |  V T | (V) |  V T | (V) -6 -6 10 10 0.1 0.1  | Δ V T |  | Δ V T | -7 -7 10 10 0.05 0.05 -8 -8 0 0 10 10 -4 -4 -2 -2 0 0 2 2 4 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 Initial Initial Stress time (s) Stress time (s) • Very fast I Goff and V T degradation (<10 ms)  E-field driven oxide punch-through? Electrochemical etching? • Degradation saturates after 10 4 s. 9/20

  10. I D Transient Measurement trapping pulse ( 1 s V GS = ‐ 10 V, V DS =0 V) trapping pulse ( 1 s V GS = ‐ 10 V, V DS =0 V) @ t=0 - @ t=0 - uncollapsed I Dlin (fresh) uncollapsed I Dlin (fresh) 10 10 stress time=0-1 s stress time=0-1 s permanent permanent degradation degradation 10 10 uncollapsed I Dlin (stressed) uncollapsed I Dlin (stressed) 9 9 100 100 I Dlin (mA) I Dlin (mA) 8 8 1000 1000 current collapse : current collapse : trapping trapping 7 7 degradation degradation After 10ks After 10ks 6 6 collapsed I Dlin (stressed) collapsed I Dlin (stressed) -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 uncol. I Dlin – col. I Dlin t (sec) t (sec) CC= uncollapsed I Dlin • After electrical stress: Permanent degradation + trapping related degradation 10/20

  11. Detrapping Time-constant Spectrum Stress time Stress time -4 -4 0x 10 0x 10 <1s <1s 10s 10s -0.2 -0.2 Amplitude (A.U.) Amplitude (A.U.) 100s 100s -0.4 -0.4 1000s 1000s -0.6 -0.6 V DS =0 pulse V DS =0 pulse >10ks >10ks 1s, V GS = ‐ 10 V 1s, V GS = ‐ 10 V -0.8 -0.8 T a =30 °C T a =30 °C DP1 DP1 -1 -1 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Detrapping time constant (sec) Detrapping time constant (sec) • Sharp increase in DP1 (E a =0.56 eV) + long time constant slow traps beyond incubation time. 11/20

  12. Drain Current Degradation 6 6 35 35 Permanent I Dmax Degradation (%) Permanent I Dmax Degradation (%) Stress: V GS = ‐ 7 V and V DS =40 V Stress: V GS = ‐ 7 V and V DS =40 V 30 30 5 5 125 °C 125 °C Current collapse (%) Current collapse (%) 25 25 Current collapse  Current collapse  4 4 20 20 3 3 15 15 2 2 Incubation 10 10 time  I Dmax  I Dmax 1 1 5 5 degradation degradation 0 0 0 0 -4 -4 -2 -2 0 0 2 2 4 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 Initial Initial uncol. I Dlin – col. I Dlin Stress time (s) Stress time (s) CC= uncollapsed I Dlin • For current collapse and permanent I Dmax degradation, incubation time is observed. 12/20

  13. Temperature Dependence: I G 4 10 Stress: V GS = ‐ 7 V and V DS =40 V 125 °C 3 75 °C Normalized |I Goff | 10 |I Goff /I Goff (0)| 150 °C 2 10 100 °C 1 10 0 10 -4 -2 0 2 4 6 10 10 10 10 10 10 0 Stress Time (s) • Weak temperature dependence 13/20

  14. Temperature Dependence: V T 0 0 -0.05 -0.05 150 °C 150 °C -0.1 -0.1 125 °C 125 °C 100 °C 100 °C  V T (V)  V T (V) -0.15 -0.15 -0.2 -0.2 -0.25 -0.25 75 °C 75 °C Stress: Stress: -0.3 -0.3 V GS = ‐ 7 V and V DS =40 V V GS = ‐ 7 V and V DS =40 V -0.35 -0.35 -4 -4 -2 -2 0 0 2 2 4 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 0 0 Stress Time (s) Stress Time (s) • No dependence during initial negative V T shift • Positive turn-around seems to occur earlier at high T 14/20

  15. Permanent I Dmax Degradation 1.02 1.02 1 1 75 °C 75 °C I Dmax (norm) I Dmax (norm) 0.98 0.98 100 °C 100 °C 0.96 0.96 0.94 0.94 125 °C 125 °C Stress: Stress: 150 °C 150 °C V GS = ‐ 7 V and V DS =40 V V GS = ‐ 7 V and V DS =40 V 0.92 0.92 -4 -4 -2 -2 0 0 2 2 4 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 0 0 Stress Time (s) Stress Time (s) • Shorter incubation time at high T • No saturation behavior up to >10 5 s 15/20

  16. Current Collapse 40 40 150 °C 150 °C V GS = ‐ 7 V and V DS =40 V V GS = ‐ 7 V and V DS =40 V 125 °C 125 °C Current collapse (%) Current collapse (%) 30 30 100 °C 100 °C 75 °C 75 °C 20 20 10 10 0 0 -4 -4 -2 -2 0 0 2 2 4 4 6 6 10 10 10 10 10 10 10 10 10 10 10 10 Stress Time (s) Stress Time (s) • Shorter incubation time at high T • More degradation at high T 16/20

  17. Temperature Acceleration of Incubation Time 15 Permanent I Dmax degradation 10 E a =1.12 eV ln(  inc ) (s) Current collapse 5 E a =0.59 eV 0 I Goff , E a =0.17 eV -5 28 30 32 34 36 1/kT (eV -1 ) • Different level of temperature acceleration for incubation time. • E a for permanent I Dmax degradation is similar to life test data * . 17/20 * Saunier, DRC 2007; Meneghesso, IJMWT 2010

  18. Discussion: Time Evolution of Structural Degradation V DS =0, V GS =-40 V, T base =150 °C Joh, IWN 2010 • Very fast groove formation (10 s) on gate edge.  Related to gate current degradation • Pit density/size gradually increase with time. 18/20

  19. Electrical vs. Structural Degradation 2 10 10000 Stress: 150 °C V GS = ‐ 7 V and V DS =40 V 125 °C Average Pit Area (nm 2 ) Current collapse (%) 100 °C 75 °C 1 10 1000 Pit area~t 1/4 Slope=0.22 100 0 10 -4 -2 0 2 4 6 10 10 10 10 10 10 1 10 100 1000 10000 0 Stress Time (s) Stress Time (s) Joh, IWN 2010 Similar time dependence in current collapse and pit formation. 19/20

  20. Conclusion • Investigated time evolution of electrical degradation in GaN HEMTs • Fast I G degradation ~ 10-100 ms – Weak temperature dependence – Oxide punch through / groove formation? • Current collapse degradation ~ 10-100 s – Related to pit formation • Permanent I D degradation >100 s – Strong thermal activation (E a =1.1 eV) 20/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend