the zoo of all optical magnetic switching
play

The zoo of all-optical magnetic switching mechanisms & - PowerPoint PPT Presentation

The zoo of all-optical magnetic switching mechanisms & time-scales Andrei Kirilyuk FELIX Laboratory, Radboud University, Nijmegen, The Netherlands 1 ESM Krakow - September 2018 ric Beaurepaire Jean-Yves Bigot 28.10.1959 24.04.2018


  1. The zoo of all-optical magnetic switching mechanisms & time-scales Andrei Kirilyuk FELIX Laboratory, Radboud University, Nijmegen, The Netherlands 1 ESM Krakow - September 2018

  2. Éric Beaurepaire Jean-Yves Bigot 28.10.1959 – 24.04.2018 29.02.1956 – 02.05.2018 ESM Krakow - September 2018

  3. ESM Krakow - September 2018

  4. ESM Krakow - September 2018

  5. ESM Krakow - September 2018

  6. ESM Krakow - September 2018

  7. ESM Krakow - September 2018

  8. Only laser pulses can be fast enough! Time (s) Benchmark: 180 o (or 90 o ) switching reverse in <10 -10 s, keep stable for 10 8 s 8 ESM Krakow - September 2018

  9. Did it switch? Interpretation of the data... picture by Bert Koopmans, TUe ESM Krakow - September 2018

  10. Part 1: classification of laser-induced effects Part 2: the switching as such 10 ESM Krakow - September 2018

  11. Effects of the laser pulse: classification I. Thermal effects: change of M is a result of change of T 11 ESM Krakow - September 2018

  12. Laser-induced collapse of magnetization thin Ni film Beaurepaire et al, PRL 76 , 4250 (1996) 12 ESM Krakow - September 2018

  13. 3T model and derivatives M3TM Beaurepaire et al, PRL 76 , 4250 (1996) Koopmans et al, Nature Mater. 9 , 259 (2010) 13 ESM Krakow - September 2018

  14. Effects of the laser pulse: classification I. Thermal effects: change of M is a result of change of T II. Nonthermal photo-magnetic effects: based on photon absorption 14 ESM Krakow - September 2018

  15. Photo-magnetic anisotropy in garnets pump polarization dependence! Hansteen et al ., PRL 95 , 047402 (2005); Phys. Rev. B 73 , 014421 (2006). 15 ESM Krakow - September 2018

  16. Effects of the laser pulse: classification I. Thermal effects: change of M is a result of change of T II. Nonthermal photo-magnetic effects: based on photon absorption III. Nonthermal opto-magnetic effects: do not require absorption 16 ESM Krakow - September 2018

  17. Inverse Faraday effect Pitaevskii, Sov. Phys. JETP 12 , 1008 (1961). van der Ziel Phys. Rev. Lett. 15 , 190 (1965). 17 ESM Krakow - September 2018

  18. Inverse Faraday effect to excite spin dynamics equivalent to a 100 fs magnetic field pulse of some 0.5–1 Tesla! again, the dependence on pump polarization! see also: Hansteen et al., PRB 73 , 014421 (2006); Kimel et al ., Nature 435 , 655 (2005) Kalashnikova et al, PRL 99 , 167205 (2007) 18 ESM Krakow - September 2018

  19. Effects of the laser pulse: summary I. Thermal effects: change of M is a result of change of T II. Nonthermal photo-magnetic effects: based on photon absorption displacive effect III. Nonthermal opto-magnetic effects: do not require absorption impulsive effect 19 ESM Krakow - September 2018

  20. Part 1: classification of laser-induced effects Part 2: the switching as such 20 ESM Krakow - September 2018

  21. 1. Switching based on thermal effects 21 ESM Krakow - September 2018

  22. Ferrimagnetic RE-TM alloys & multilayers (e.g. GdFeCo) T M T A RE (Gd) M RE A TM T C ~500 K M A A RE M TM TM (FeCo) Temperature g Gd < g FeCo 22 ESM Krakow - September 2018

  23. Toggle switching in GdFeCo Each next image - a single unpolarized laser pulse Ostler et al., Nature Commun. 3 , 666 (2012) amount of energy absorbed in the sample per pulse stays constant Khorsand et al, Phys. Rev. Lett. 108 , 127205 (2012) 23 ESM Krakow - September 2018

  24. Switching of a multi-domains structure: reproducibility no domain wall motion, just reversal of the whole pattern Le Guyader et al., Phys. Rev. B 93 , 134402 (2016) 24 ESM Krakow - September 2018

  25. Dynamics of sublattices Radu et al., Nature 472 , 205 (2011) Fe: 100±23 fs Gd : 427±102 fs ferri-magnet turns ferro! 25 ESM Krakow - September 2018

  26. Longitudinal relaxation in multi-sublattice magnets Mentink et al., PRL 108 , 057202 (2012); where and exchange relativistic (usual damping) conservation S tot Bloch relaxation 26 ESM Krakow - September 2018

  27. Crossover from temperature- to exchange-dominated Gd electron temperature Fe t derived in Mentink et al., PRL 108 , 057202 (2012); see Kirilyuk et al., Rep. Prog. Phys. 76, 026501 (2013) for summary 27 ESM Krakow - September 2018

  28. The range of switching Vahaplar et al, PRB 85 , 104402 (2012) It works in the broad vicinity of the compensation temperature Mangin et al, Nature Materials 13 , 286 (2014) 28 ESM Krakow - September 2018

  29. Mechanism: thermal, fast sublattice-selective demagnetization + exchange-driven reversal Time-scale: ~1 ps reversal, 30-1000 ps recovery 29 ESM Krakow - September 2018

  30. 2. Photo-magnetic switching in dielectrics 30 ESM Krakow - September 2018

  31. Co-substituted YIG film Y 2 CaFe 3.9 Co 0.1 GeO 12 on GGG (001) thickness d=7.5 μm (grown by LPE) magnetic anisotropy : K 1 = -10 4 erg/cm 3 K U = 10 3 erg/cm 3 domain structure: metastable states 31 ESM Krakow - September 2018

  32. Single-pulse switching A. Stupakiewicz et al., Nature 542 , 71 (2017) Image of the final state >10 ms after 50 fs single pulse 200×200 µ m 2 • repeatable • zero applied field • room temperature • tiny absorbed energy (<1 K) 32 ESM Krakow - September 2018

  33. Time resolved observation of switching switched after first quarter-period 1 -1 precessional switching! A. Stupakiewicz et al., Nature 542 , 71 (2017) 33 ESM Krakow - September 2018

  34. Precise atomic-scale control of anisotropy? A. Stupakiewicz et al., to be published 34 ESM Krakow - September 2018

  35. Mechanism: photo-magnetic anisotropy driving the precessional reversal (nonthermal I) Time-scale: precessional motion in the anisotropy field: 20-60 ps 35 ESM Krakow - September 2018

  36. 3. Opto-magnetic effect (but not only...) 36 ESM Krakow - September 2018

  37. More universal? Co/Pt, FePt Science 345 , 1337 (2014) 37 ESM Krakow - September 2018

  38. Helicity-effect in the ultrafast demagnetization [Co(0.4 nm)/Pt(0.7 nm)] 3 multilayers magnetic circular dichroism? Tsema et al, Appl. Phys. Lett. 109 , 072405 (2016) 38 ESM Krakow - September 2018

  39. Pulse width dependence R. Medapalli et al, PRB 96 , 224421 (2017) Co/Pt Co/Pd in collaboration with O. Hellwig, HGST in collaboration with R. Medapalli and E. Fullerton 39 ESM Krakow - September 2018

  40. Number-of-pulses dependence in Co/Pt, Co/Pd The initial nucleation is due to randomized demagnetization, and is followed by helicity-dependent growth 40 ESM Krakow - September 2018

  41. Domain wall motion (CoPd sample from HGST) km/s 2.2 ps pulse 4 2 0 The (too) high speed probably implies after-pulse motion thermal (MCD) or opto-magnetic? 41 ESM Krakow - September 2018

  42. Entropy, thermal magnons? Magnon flow W.Jiang et al, PRL 110 , 177202 (2013) Role of entropy F. Schlickeiser et al, PRL 113 , 097201 (2014) Both thermal, based on MCD why would they be so sensitive to the pulse width?? 42 ESM Krakow - September 2018

  43. inverse Faraday effect Vahaplar et al, PRB 85 , 104402 (2012) Combination of thermal + opto-magnetic, better with longer pulses difficult to estimate the effective field! 43 ESM Krakow - September 2018

  44. Mechanism: demagnetization-driven nucleation followed by domain-wall motion (magnons, entropy, iFE?) - i.e. thermal + nonthermal II Time-scale: DW motion of few nm/pulse 44 ESM Krakow - September 2018

  45. Summary: Metallic ferrimagnets: thermally-induced, exchange driven toggle switching Multilayers with strong spin-orbit: domain wall motion by inverse Faraday effect Dielectrics: non-thermal, change of anisotropy by photo-magnetic effects 45 ESM Krakow - September 2018

  46. Spare slides ESM Krakow - September 2018

  47. Controlling the route of the phase transition 90 o reorientation phase transition (SmPr)FeO 3 de Jong et al, PRL 108 , 157601 (2012) thermal + opto-magnetic 47 ESM Krakow - September 2018

  48. Polarization dependent… Stanciu et al, Phys. Rev. Lett. 99 , 047601 (2007) 48 ESM Krakow - September 2018

  49. Different ferrimagnets: TbFeCo Khorsand et al., Phys. Rev. Lett. 110 , 107205 (2013) 49 ESM Krakow - September 2018

  50. Different ferrimagnets: NdFeCo and PrFeCo demagnetization sperimagnetic arrangement with an ‘overshot’ J. Becker et al, Phys. Rev. B 92 , 180407(R) (2015) 50 ESM Krakow - September 2018

  51. Morin 1st order phase transition in DyFeO 3 T < T M =39 K T > T M =39 K AFM weak FM D. Afanasiev et al, PRL 116 , 097401 (2016) same linear polarization 51 ESM Krakow - September 2018

  52. Dynamics: from precession to the new phase difference with 2nd order D. Afanasiev et al, PRL 116 , 097401 (2016) thermal + opto-magnetic 52 ESM Krakow - September 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend