temperature accelerated degradation of gan hemts under
play

Temperature accelerated Degradation of GaN HEMTs under High power - PowerPoint PPT Presentation

Temperature accelerated Degradation of GaN HEMTs under High power Stress: Activation Energy of Drain Current Degradation Yufei Wu, Chia Yu Chen and Jess A. del Alamo Microsystems Technology Laboratory Acknowledgement: DRIFT MURI,


  1. Temperature ‐ accelerated Degradation of GaN HEMTs under High ‐ power Stress: Activation Energy of Drain Current Degradation Yufei Wu, Chia ‐ Yu Chen and Jesús A. del Alamo Microsystems Technology Laboratory Acknowledgement: DRIFT ‐ MURI, TriQuint Semiconductor 1

  2. Outline 1. Motivation 2. High ‐ power and high ‐ temperature stress experiments 3. An improved approach 4. Conclusions 2

  3. Motivation • Activation energy, E a : N. Malbert, IRPS 2010 essential in predicting lifetime • Conventionally: high temperature accelerated life test 3

  4. Motivation • Activation energy, E a : N. Malbert, IRPS 2010 essential in predicting lifetime • Conventionally: high temperature accelerated life test Problems: • Requires multiple devices • Carrier trapping not properly dealt with • Different degradation mechanisms can emerge at different temperatures 4

  5. Motivation • Activation energy, E a : N. Malbert, IRPS 2010 essential in predicting lifetime • Conventionally: high temperature accelerated life test Desirable: E a extraction from T j measurements on a single device Step ‐ temperature stress time 5

  6. Outline 1. Motivation 2. High ‐ power and high ‐ temperature stress experiments 3. An improved approach 4. Conclusions 6

  7. Setup for DC reliability studies Accel ‐ RF System Devices: Prototype GaN Power Amplifier Hardware DC/Pulsed MMIC from industry Characterization DUT Switching Matrix ‐ KeithleySources ‐ Agilent B1500A Heater RF/DC Units Accel ‐ RF AARTS RF10000 ‐ 4/S system T base Windows ‐ based PC MIT RF/DC Accel ‐ RF Software Characterization Suite ‐ RF measurement ‐ DC FOMs ‐ Temperature control ‐ Current collapse ‐ Stressing Augmented with: • external instrumentation for DC/pulsed characterization • software to control external instrumentation and extract DC FOMs 7

  8. High ‐ power DC Experiment Flowchart • Detrapping : T base = 250 °C for 7.5 hours Start • Full characterization Detrapping o At T base = 50 °C o Full DC I ‐ V sweep Full Characterization o Current collapse DC and Temperature Stress Inner loop Short Characterization (DC) End: detrapping + full characterization 8

  9. High ‐ power DC Experiment Flowchart • Detrapping : T base = 250 °C for 7.5 hours Start • Full characterization Detrapping o At T base = 50 °C o Full DC I ‐ V sweep Full Characterization o Current collapse • Stress: DC and Temperature Stress Inner loop o High ‐ power condition o Base temperature stepped up Short Characterization (DC) • Short characterization o Every 30 minutes at T base = 50 °C End: detrapping + o DC FOMs: I Dmax , I Goff , R D , R S , V T , … full characterization 9

  10. High ‐ power DC Experiment Flowchart • Detrapping: T base = 250 °C for 7.5 hours Start • Full characterization Detrapping o At T base = 50 °C o Full DC I ‐ V sweep Full Characterization o Current collapse • Stress: DC and Temperature Stress Inner loop o High ‐ power condition o Base temperature stepped up Short Characterization (DC) • Short characterization o Every 30 minutes at T base = 50 °C End: detrapping + o DC FOMs: I Dmax , I Goff , R D , R S , V T , … full characterization 10

  11. Definitions of Various Figures of Merit Parameter Definition I Dmax I D at V GS =2 V, V DS =5 V I Goff I G at V GS = ‐ 5 V, V DS =0.1 V R D Drain resistance measured with I G = 20 mA/mm R S Source resistance measured with I G = 20 mA/mm V T V GS – 0.5V DS when I D = 1 mA/mm at V DS = 0.1 V Current Collapse Percentage change in I Dmax after 1 sec. V DS = 0 V, V GS = ‐ 10 V pulse 11

  12. High ‐ power DC Experiment High ‐ power stress: V DS = 40 V, I D = 100 mA/mm, T base = 50 °C – 230 °C, 600 min/step outer loop data outer loop data 1.1 120 50 140 160 180 1.0 1 90 130 150 170 0.9 220 0.8 190 |I Goff | (mA/mm) 190 I Dmax /I Dmax (0) 0.7 0.1 180 200 0.6 0.5 210 50 0.4 0.01 0.3 170 T base (°C) = 220 0.2 160 0.1 1E-3 0 5000 10000 15000 0 5000 10000 15000 time (min) time (min) 12

  13. High ‐ power DC Experiment High ‐ power stress: V DS = 40 V, I D = 100 mA/mm, T base = 50 °C – 230 °C, 600 min/step outer loop data outer loop data 1.1 120 50 140 160 180 1.0 1 90 130 150 170 0.9 220 0.8 190 |I Goff | (mA/mm) 190 I Dmax /I Dmax (0) 0.7 0.1 180 200 0.6 0.5 210 50 0.4 0.01 0.3 170 T base (°C) = 220 0.2 160 0.1 1E-3 0 5000 10000 15000 0 5000 10000 15000 time (min) time (min) • |I Goff | increases from T base =170 to 190°C; then saturates • Significant I Dmax degradation for T base > 180 °C • Thermally activated I Dmax degradation rate shown 13

  14. High ‐ power DC Experiment High ‐ power stress: V DS = 40 V, I D = 100 mA/mm, T base = 50 °C – 230 °C, 600 min/step 3.00 230 2.75 2.50 220 2.25 R D R/R(0) 2.00 1.75 210 1.50 200 T base (°C)= 1.25 180190 50 160 120 140 1.00 R S 150 170 90 130 0.75 0 5000 10000 15000 time (min) • R D increases significantly, consistent with I Dmax decrease • R S increases much less 14

  15. Activation Energies of Degradation Rates Inner loop data Outer loop data (device detrapped) 12 12 10 10 R D : E a =0.91 eV ln(1/|slope|) 8 R D : E a =1.00 eV ln(1/|slope|) 8 6 6 4 4 I Dmax : E a =0.94 eV I Dmax : E a =0.58 eV 2 2 25 26 27 28 29 30 31 25 26 27 28 29 30 31 -1 ) 1/kT channel (eV -1 ) 1/kT channel (eV T channel obtained from thermal model of MMICs 15

  16. Activation Energies of Degradation Rates Inner loop data Outer loop data (device detrapped) 12 12 10 10 R D : E a =0.91 eV ln(1/|slope|) 8 R D : E a =1.00 eV ln(1/|slope|) 8 6 6 4 4 I Dmax : E a =0.94 eV I Dmax : E a =0.58 eV 2 2 25 26 27 28 29 30 31 25 26 27 28 29 30 31 -1 ) 1/kT channel (eV -1 ) 1/kT channel (eV T channel obtained from thermal model of MMICs • Inner loop data : Large difference between E a for I Dmax and R D 16

  17. Activation Energies of Degradation Rates Inner loop data Outer loop data (device detrapped) 12 12 10 10 R D : E a =0.91 eV ln(1/|slope|) 8 R D : E a =1.00 eV ln(1/|slope|) 8 6 6 4 4 I Dmax : E a =0.94 eV I Dmax : E a =0.58 eV 2 2 25 26 27 28 29 30 31 25 26 27 28 29 30 31 -1 ) 1/kT channel (eV -1 ) 1/kT channel (eV T channel obtained from thermal model of MMICs • Inner loop data : Large difference between E a for I Dmax and R D • Outer loop data : Thermally activated behavior 17

  18. Activation Energies of Degradation Rates Inner loop data Outer loop data (device detrapped) 12 12 10 10 R D : E a =0.91 eV ln(1/|slope|) 8 R D : E a =1.00 eV ln(1/|slope|) 8 6 6 4 4 I Dmax : E a =0.94 eV I Dmax : E a =0.58 eV 2 2 25 26 27 28 29 30 31 25 26 27 28 29 30 31 -1 ) 1/kT channel (eV -1 ) 1/kT channel (eV T channel obtained from thermal model of MMICs • Inner loop data : Large difference between E a for I Dmax and R D • Outer loop data : Close E a values for I Dmax and R D  common physical origin 18

  19. Conclusions Drawn from the Experiment 1 • I G degradation: 220 |I Goff | (mA/mm) 190 o Increases fast at first 0.1 180 o Eventually saturates 50 0.01 170 • I D degradation: 160 1E-3 o Significant degradation only 0 5000 10000 15000 time (min) after I G degradation is 1.1 saturated 120 50 140 160 180 1.0 90 130 150 170 0.9 o Thermally activated 0.8 190 I Dmax /I Dmax (0) 0.7 200 0.6 0.5 210 0.4 0.3 T base (°C) = 220 0.2 0.1 0 5000 10000 15000 19 time (min)

  20. Conclusions Drawn from the Experiment • I G degradation: o Increases fast at first o Eventually saturates • I D degradation: o Significant degradation only after I G degradation is saturated o Thermally activated • Desirable: separate I G and I D degradation • Key idea: short stress to degrade I G without I D degradation, then long stress to degrade I D 20

  21. Outline 1. Motivation 2. High ‐ power and high ‐ temperature stress experiments 3. An improved approach 4. Conclusions 21

  22. DC Experiment : Improved Approach  Phase 1 : degrade I G without significant I D degradation • Short stress period o T base = 50 ‐ 220 °C, in 20 °C steps o Stress time: 6 minutes 22

  23. DC Experiment : Improved Approach  Phase 1 : degrade I G without significant I D degradation • Short stress period o T base = 50 ‐ 220 °C, in 20 °C steps o Stress time: 6 minutes  Phase 2 : degrade I D without further I G degradation • Longer stress period o T base : from 120 °C, increase in steps o Stress time: 24 hours 23

  24. A Typical Experiment (Phase 2) High ‐ power stress: V DS = 40 V, I D = 100 mA/mm, T base = 120 °C – 215 °C, 24 hours/step After detrapping After detrapping 1.00 1  I Dmax 0.95  |I Goff | 120 150 170 205 210 215 |I Goff | (mA/mm) 120 150 170 185 200 185 0.90 I Dmax /I Dmax (0) 0.85 200 T base (°C) 0.1 0.80 205 0.75 210 0.70 T base (°C) = 215 0.01 0.65 0 5000 10000 15000 0 5000 10000 15000 time (min) time (min) During phase 1: |I Goff |increases by 2 orders of magnitude; I Dmax decreases by 3% 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend