hot and dense qcd on the lattice
play

Hot and Dense QCD on the lattice Frithjof Karsch, BNL Introduction: - PowerPoint PPT Presentation

Hot and Dense QCD on the lattice Frithjof Karsch, BNL Introduction: T , gT , g 2 T ,... screening and the running coupling Bulk thermodynamics T c and the equation of state in (2+1)-flavor QCD with an almost realistic quark mass spectrum


  1. Hot and Dense QCD on the lattice Frithjof Karsch, BNL Introduction: T , gT , g 2 T ,... screening and the running coupling Bulk thermodynamics T c and the equation of state in (2+1)-flavor QCD with an almost realistic quark mass spectrum Thermodynamics at non-zero baryon number density hadronic fluctuations isentropic equation of state Conclusions F . Karsch, apeNEXT, Florence 2007 – p.1/32

  2. Critical behavior in hot and dense matter: QCD phase diagram crossover vs. phase transition T deconfined, quark-gluon plasma χ -symmetric 170 ~ MeV hadron gas confined, χ -SB color superconductor µ o µ few times nuclear matter density F . Karsch, apeNEXT, Florence 2007 – p.2/32

  3. Critical behavior in hot and dense matter: QCD phase diagram continuous/rapid continuous transition for (crossover) transition small chemical potential and small quark masses T deconfined, quark-gluon plasma χ -symmetric 170 ~ MeV hadron gas confined, χ -SB color superconductor µ o µ few times nuclear matter density F . Karsch, apeNEXT, Florence 2007 – p.2/32

  4. Critical behavior in hot and dense matter: QCD phase diagram continuous/rapid continuous transition for (crossover) transition small chemical potential and small quark masses T deconfined, quark-gluon plasma χ -symmetric 170 ~ MeV 2nd order phase transition; chiral critical Ising universality class point T c ( µ ) under investigation hadron gas confined, location of CCP uncertain: χ -SB color volume and quark mass dependence superconductor µ o µ few times nuclear matter density F . Karsch, apeNEXT, Florence 2007 – p.2/32

  5. Critical behavior in hot and dense matter: QCD phase diagram continuous/rapid continuous transition for (crossover) transition small chemical potential and small quark masses T deconfined, quark-gluon plasma χ -symmetric 170 ~ MeV 2nd order phase transition; chiral critical Ising universality class point T c ( µ ) under investigation hadron gas confined, location of CCP uncertain: χ -SB color volume and quark mass dependence superconductor µ o µ improving accuracy on T c , ǫ c , ǫ ( p ) and few times nuclear matter density the phase boundary is mandatory to make contact to HIC phenomenology F . Karsch, apeNEXT, Florence 2007 – p.2/32

  6. Non-perturbative QGP Perturbation theory provides a hierachy of length scales T ≫ gT ≫ g 2 T ... ⇒ guiding principle for effective theories, resummation, dimensional reduction... Early lattice results show that g 2 ( T ) > 1 even at T ∼ 5 T c G. Boyd et al, NP B469 (1996) 419: SU(3) thermodynamics.. ...one has to conclude that the temperature dependent running coupling has to be large, g 2 ( T ) ≃ 2 even at T ≃ 5 T c the Debye screening mass is large close to T c the spatial string tension does not vanish above T c √ σ s � = 0 ⇒ the QGP is ”non-perturbative” up to very high T F . Karsch, apeNEXT, Florence 2007 – p.3/32

  7. Screening of heavy quark free energies – remnant of confinement above T c – pure gauge: O.Kaczmarek, FK, P . Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510 singlet free energy F 1 [MeV] 1000 0.76T c T ≃ T c : screening for 0.81T c r> ∼ 0 . 5 fm 0.90T c 500 0.96T c F 1 ( r, T ) ∼ α ( T ) 1.00T c e − µ ( T ) r 1.02T c r 1.07T c 0 1.23T c + const. 1.50T c 1.98T c 4.01T c r [fm] -500 0 0.5 1 1.5 2 2.5 3 qq ( r, T = 0) = − 4 α ( r, T = 0) F 1 ( r, T ) follows linear rise of V ¯ + σr 3 r for T < ∼ 1 . 5 T c , r< ∼ 0 . 3 fm F . Karsch, apeNEXT, Florence 2007 – p.4/32

  8. ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� Singlet free energy and asymptotic freedom pure gauge: O.Kaczmarek, FK, P . Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510 singlet free energy defines a running coupling: α eff = 3 r 2 0.6 d F 1 ( r, T ) T/T c α qq (r,T) T=0 4 d r 0.5 1.05 (in Coulomb gauge) 1.10 1.20 0.4 1.30 1.50 1.60 0.3 3.00 6.00 9.00 0.2 12.0 0.1 r [fm] 0 0.01 0.1 F . Karsch, apeNEXT, Florence 2007 – p.5/32

  9. ��� ��� ��� ��� ��� ��� ��� ��� Singlet free energy and asymptotic freedom pure gauge: O.Kaczmarek, FK, P . Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510 singlet free energy defines a running coupling: α eff = 3 r 2 0.6 d F 1 ( r, T ) T/T c α qq (r,T) T=0 4 d r 0.5 1.05 (in Coulomb gauge) 1.10 1.20 0.4 1.30 1.50 1.60 0.3 large distance: constant 3.00 �� �� α ≡ π/ 16 �� �� 6.00 �� �� Coulomb term (string model) 9.00 0.2 12.0 short distance: running coupling α ( r ) from ( T = 0) , 3-loop ��� ��� ��� ��� ��� ��� 0.1 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� (S. Necco, R. Sommer, r [fm] Nucl. Phys. B622 (2002) 328) 0 0.01 0.1 T-dependence starts in non-perturbative short distance physics ⇔ vacuum physics regime for T < ∼ 3 T c F . Karsch, apeNEXT, Florence 2007 – p.5/32

  10. Singlet free energy and asymptotic freedom pure gauge: O.Kaczmarek, FK, P . Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510 singlet free energy defines a running coupling: α eff = 3 r 2 0.6 d F 1 ( r, T ) T/T c α qq (r,T) T=0 4 d r 0.5 1.05 rise due to (in Coulomb gauge) 1.10 confinement 1.20 �� �� α eff ∼ σr 2 �� �� �� �� 0.4 1.30 1.50 1.60 0.3 large distance: constant 3.00 �� �� α ≡ π/ 16 �� �� 6.00 �� �� Coulomb term (string model) 9.00 0.2 12.0 short distance: running coupling α ( r ) from ( T = 0) , 3-loop ��� ��� ��� ��� ��� ��� 0.1 ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� (S. Necco, R. Sommer, r [fm] Nucl. Phys. B622 (2002) 328) 0 0.01 0.1 T-dependence starts in non-perturbative short distance physics ⇔ vacuum physics regime for T < ∼ 3 T c F . Karsch, apeNEXT, Florence 2007 – p.5/32

  11. Non-perturbative Debye screening � 1 + n f leading order perturbation theory: m D = g ( T ) T 6 T c < T < ∼ 10 T c : non-perturbative effects are well represented by an ”A-factor”: m D ≡ Ag ( T ) T, A ≃ 1 . 5 perturbative limit is reached very slowly 100 10 10 10 10 1 0.5 4.0 (logarithms at work!!) T / Λ MS SU(3) m / gT m D /T N f =0 4 3.0 N f =2 m D /T=Ag(T) 3 A=1.42(2) 2.0 2 β G =144 32 3 1.0 β G =72 24 3 1 β G =40 24 3 g ( T ) ≃ 1 . 5 ⇔ α ( T ) ≃ 0 . 18 β G =24 24 3 β G =12 24 3 x T/T c 0 0.0 −3 −2 −1 10 10 10 1 1.5 2 2.5 3 3.5 4 O.Kaczmarek,F .Zantow, PRD 71 (2005) 114510 K.Kajantie et al, PRL 79 (1997) 3130 F . Karsch, apeNEXT, Florence 2007 – p.6/32

  12. The spatial string tension Non-perturbative, vanishes in high-T perturbation theory: R x ,R y →∞ ln W ( R x , R y ) √ σ s = − lim R x R y √ σ s c M : 3-d SU(3), LGT g 2 ( T ) T = c M f M ( g ( T )) , c M = 0 . 553(1) g M ≡ g 2 f M : dim. red. pert. th. 1.2 g 2 ( T ) ≃ 2 ⇔ α ( T ) ≃ 0 . 16 T/ σ 1/2 dimensional reduction works for T> 4-d SU(3) and QCD ∼ 2 T c 1 - c M (almost) flavor independent - g 2 ( T ) shows 2-loop running 0.8 c = 0 . 566(13) [SU(3)] c = 0 . 594(39) [QCD] 0.6 N f =0 T/T c G. Boyd et al. NP B469 (1996) 419 N f =2+1 0.4 RBC-Bielefeld, preliminary 1 2 4 F . Karsch, apeNEXT, Florence 2007 – p.7/32

  13. µ = 0 : Equation of State and T c 280 ε SB /T4 16.0 T c [MeV] strong deviations from ε = 3p 15% 260 14.0 dev. 12.0 ε /T 4 240 3p /T 4 10.0 220 8.0 n f =2, p4 200 6.0 n f =3, p4 3 flavor, N τ =4, p4 staggered n f =2, std 4.0 180 m π =770 MeV 2.0 m PS [MeV] 160 T/T c 0.0 0 500 1000 1500 2000 2500 3000 3500 1.0 1.5 2.0 2.5 3.0 3.5 4.0 QCD EoS transition temperature strong deviations from ideal T c = (173 ± 8 ± sys ) MeV gas behavior ( ǫ = 3 p ) for weak quark mass and flavor T c ≤ T ∼ 3 T c and even dependence at high T improved staggered fermions but still on rather coarse lattices: N τ = 4 , i.e. a − 1 ≃ 0 . 8 GeV with moderately light quarks FK, E. Laermann, A. Peikert, Nucl. Phys. B605 (2001) 579 F . Karsch, apeNEXT, Florence 2007 – p.8/32

  14. EoS and T c Goal: QCD thermodynamics with realistic quark masses and controlled extrapolation to the continuum limit T c , EoS, µ q > 0 , ... use an improved staggered fermion action that removes O ( a 2 ) errors in bulk thermodynamic quantities and reduces flavor symmetry breaking inherent to the staggered formulation RBC-Bielefeld choice: p4-action + 3-link smearing (p4fat3) MILC: Naik-action + (3,5,7)-link smearing (asqtad); Wuppertal: standard staggered + exponentiated 3-link smearing (stout) F . Karsch, apeNEXT, Florence 2007 – p.9/32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend