hot qcd matter in magnetic fields phase transition and
play

Hot QCD matter in magnetic fields: phase transition and permeability - PowerPoint PPT Presentation

Hot QCD matter in magnetic fields: phase transition and permeability Gergely Endr odi University of Bielefeld Theoretical Physics Colloquium 24. June 2016 Preface: QCD phases and equation of state The phases of QCD phases of QCD


  1. Hot QCD matter in magnetic fields: phase transition and permeability Gergely Endr˝ odi University of Bielefeld Theoretical Physics Colloquium 24. June 2016

  2. Preface: QCD phases and equation of state

  3. The phases of QCD ◮ phases of QCD characterized by approx. order parameters ◮ quark condensate ¯ ψψ (chiral symmetry breaking) ◮ Polyakov loop P (deconfinement) 1 / 29

  4. The phases of QCD ◮ phases of QCD characterized by approx. order parameters ◮ quark condensate ¯ ψψ (chiral symmetry breaking) ◮ Polyakov loop P (deconfinement) Bors´ anyi et al. ’10 1.0 1.0 Renormalized Polyakov loop Continuum � � � � Continuum � � � N t � 16 � 0.8 �� 0.8 � � N t � 16 � � N t � 12 � � � � N t � 12 � �� � �� � N t � 10 � N t � 10 � 0.6 �� 0.6 � � �� N t � 8 � N t � 8 � � � � l , s � � � � � � � ����� � �� 0.4 0.4 � ��� �� � � � � � ��� �� � � � � ��� 0.2 � � ����� � � � � � 0.2 �� �� � � � � � � � ������ � � � � � � � � � �� � ��� � � � � � � � � � � � � ��� � � � � 0.0 � �� �� � � 100 120 140 160 180 200 220 100 150 200 250 300 350 T � MeV � T � MeV � 1 / 29

  5. The phases of QCD ◮ phases of QCD characterized by approx. order parameters ◮ quark condensate ¯ ψψ (chiral symmetry breaking) ◮ Polyakov loop P (deconfinement) Bors´ anyi et al. ’10 1.0 1.0 Renormalized Polyakov loop Continuum � � � � Continuum � � � N t � 16 � 0.8 �� 0.8 � � N t � 16 � � N t � 12 � � � � N t � 12 � �� � �� � N t � 10 � N t � 10 � 0.6 �� 0.6 � � �� N t � 8 � N t � 8 � � � � l , s � � � � � � � ����� � �� 0.4 0.4 � ��� �� � � � � � ��� �� � � � � ��� 0.2 � � ����� � � � � � 0.2 �� �� � � � � � � � ������ � � � � � � � � � �� � ��� � � � � � � � � � � � � ��� � � � � 0.0 � �� �� � � 100 120 140 160 180 200 220 100 150 200 250 300 350 T � MeV � T � MeV � ◮ crossover Aoki et al. ’06 Bhattacharya et al. ’14 1 / 29

  6. The phases of QCD ◮ phases of QCD characterized by approx. order parameters ◮ quark condensate ¯ ψψ (chiral symmetry breaking) ◮ Polyakov loop P (deconfinement) Bors´ anyi et al. ’10 1.0 1.0 Renormalized Polyakov loop Continuum � � � � Continuum � � � N t � 16 � 0.8 �� 0.8 � � N t � 16 � � N t � 12 � � � � N t � 12 � �� � �� � N t � 10 � N t � 10 � 0.6 �� 0.6 � � �� N t � 8 � N t � 8 � � � � l , s � � � � � � � ����� � �� 0.4 0.4 � ��� �� � � � � � ��� �� � � � � ��� 0.2 � � ����� � � � � � 0.2 �� �� � � � � � � � ������ � � � � � � � � � �� � ��� � � � � � � � � � � � � ��� � � � � 0.0 � �� �� � � 100 120 140 160 180 200 220 100 150 200 250 300 350 T � MeV � T � MeV � ◮ crossover Aoki et al. ’06 Bhattacharya et al. ’14 ◮ T c ↔ inflection point Bazavov et al. ’18 1 / 29

  7. Equation of state of QCD ◮ equilibrium description ǫ ( p ) of QCD matter ◮ encoded in, for example, p ( T ) 4 3 2 stout HISQ ( ε -3p)/T 4 p/T 4 1 s/4T 4 T [MeV] 0 130 170 210 250 290 330 370 Bazavov et al. ’14 Bors´ anyi et al. ’13 2 / 29

  8. Phase diagram ◮ approaches: effective theories, low-energy models, lattice simulations, perturbation theory 3 / 29

  9. Phase diagram ◮ approaches: effective theories, low-energy models, lattice simulations, perturbation theory ◮ tuning necessary for low-energy models 3 / 29

  10. Permeability ◮ deviation to unity gives O ( B 2 ) contribution to EoS 4 / 29

  11. Outline ◮ applications ◮ phase diagram ◮ magnetic catalysis and inverse catalysis ◮ new developments about the mass-dependence ◮ large B limit ◮ PNJL model and improvement ◮ permeability ◮ magnetic flux quantization ◮ current-current correlators ◮ connection to HRG and perturbation theory ◮ summary 5 / 29

  12. Applications

  13. Magnetic fields ◮ off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07 impact: chiral magnetic effect, anisotropies, elliptic flow . . . Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 6 / 29

  14. Magnetic fields ◮ off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07 impact: chiral magnetic effect, anisotropies, elliptic flow . . . Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 ◮ magnetars Duncan, Thompson ’92 impact: equation of state, mass-radius relation Ferrer et al ’10 gravitational collapse/merger Anderson et al ’08 6 / 29

  15. Magnetic fields ◮ off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07 impact: chiral magnetic effect, anisotropies, elliptic flow . . . Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 ◮ magnetars Duncan, Thompson ’92 impact: equation of state, mass-radius relation Ferrer et al ’10 gravitational collapse/merger Anderson et al ’08 ◮ in the early universe, generated through phase transition in electroweak epoch Vachaspati ’91 Enqvist, Olesen ’93 6 / 29

  16. Magnetic fields ◮ off-central heavy-ion collisions Kharzeev, McLerran, Warringa ’07 impact: chiral magnetic effect, anisotropies, elliptic flow . . . Fukushima ’12 Kharzeev, Landsteiner, Schmitt, Yee ’14 ◮ magnetars Duncan, Thompson ’92 impact: equation of state, mass-radius relation Ferrer et al ’10 gravitational collapse/merger Anderson et al ’08 ◮ in the early universe, generated through phase transition in electroweak epoch Vachaspati ’91 Enqvist, Olesen ’93 ◮ strength: B ≈ 10 15 T ≈ 10 20 B earth ≈ 5 m 2 π � competition between strong force and electromagnetism 6 / 29

  17. Phase diagram – pedagogical review

  18. Magnetic catalysis, free quarks ◮ chiral condensate ↔ spectral density around 0 Banks,Casher ’80 D + m ) − 1 m → 0 ¯ ψψ ∼ tr ( / − − − → ρ (0) ◮ for free quarks, ρ is determined by Landau levels: ◮ lowest Landau level has vanishing eigenvalue ◮ Landau levels have degeneracy ∝ B 7 / 29

  19. Magnetic catalysis, free quarks ◮ chiral condensate ↔ spectral density around 0 Banks,Casher ’80 D + m ) − 1 m → 0 ¯ ψψ ∼ tr ( / − − − → ρ (0) ◮ for free quarks, ρ is determined by Landau levels: ◮ lowest Landau level has vanishing eigenvalue ◮ Landau levels have degeneracy ∝ B ◮ ρ (0) is enhanced by B 7 / 29

  20. Magnetic catalysis, free quarks ◮ chiral condensate ↔ spectral density around 0 Banks,Casher ’80 D + m ) − 1 m → 0 ¯ ψψ ∼ tr ( / − − − → ρ (0) ◮ for free quarks, ρ is determined by Landau levels: ◮ lowest Landau level has vanishing eigenvalue ◮ Landau levels have degeneracy ∝ B ◮ ρ (0) is enhanced by B ◮ magnetic catalysis: ¯ ψψ is enhanced by B Gusynin, Miransky, Shovkovy ’96 Shovkovy ’13 7 / 29

  21. Magnetic catalysis, full QCD ◮ in full QCD, gluons also affect ρ 8 / 29

  22. Magnetic catalysis, full QCD ◮ in full QCD, gluons also affect ρ ◮ emergence of a gap that pushes low modes towards zero Bruckmann, Endr˝ odi, Giordano et al. ’17 8 / 29

  23. Magnetic catalysis, full QCD ◮ in full QCD, gluons also affect ρ ◮ emergence of a gap that pushes low modes towards zero Bruckmann, Endr˝ odi, Giordano et al. ’17 ⇒ ρ (0) is enhanced by B 8 / 29

  24. Magnetic catalysis, full QCD ◮ in full QCD, gluons also affect ρ ◮ emergence of a gap that pushes low modes towards zero Bruckmann, Endr˝ odi, Giordano et al. ’17 ⇒ ρ (0) is enhanced by B ◮ side remark: free case solution on the lattice ↔ Hofstadter’s butterfly (solid state physics model) Hofstadter ’76 8 / 29

  25. Sea quarks in a magnetic field ◮ effect of B in full QCD Bruckmann, Endr˝ odi, Kov´ acs ’13 ◮ direct (valence) effect B ↔ q f ◮ indirect (sea) effect B ↔ q f ↔ g � ¯ � � � D ( B , A ) + m ) − 1 � D A µ e − S g det( / ( / ψψ ( B ) ∝ D ( B , A ) + m ) Tr � �� � � �� � sea valence 9 / 29

  26. Sea quarks in a magnetic field ◮ effect of B in full QCD Bruckmann, Endr˝ odi, Kov´ acs ’13 ◮ direct (valence) effect B ↔ q f ◮ indirect (sea) effect B ↔ q f ↔ g � ¯ � � � D ( B , A ) + m ) − 1 � D A µ e − S g det( / ( / ψψ ( B ) ∝ D ( B , A ) + m ) Tr � �� � � �� � sea valence ◮ most important feature of gauge configurations: Polyakov loop 9 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend