synthetic creutz hubbard model interacting topological
play

Synthetic Creutz-Hubbard model: interacting topological insulators - PowerPoint PPT Presentation

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms Matteo Rizzi Johannes Gutenberg Universitt Mainz J. Jnemann, et al., arXiv:1612.02996 -- accepted on PRX ICTP Trieste, 14 September 2017 Motivation


  1. Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms Matteo Rizzi Johannes Gutenberg Universität Mainz J. Jünemann, et al., arXiv:1612.02996 -- accepted on PRX ICTP Trieste, 14 September 2017

  2. Motivation • Topological phases of matter: academic & practical interests ! Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies with ultracold atoms

  3. Motivation • Topological phases of matter: academic & practical interests ! i. paradigm models <==> real materials ? (e.g., Kitaev, Haldane, Kane-Mele, Harper-Hofstadter models, ...) • Two open issues: ii. role of interactions ==> correlation effects ? (a.k.a., can one get generalizations of fractional quantum Hall effect?) Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies with ultracold atoms

  4. Motivation • Topological phases of matter: academic & practical interests ! i. paradigm models <==> real materials ? (e.g., Kitaev, Haldane, Kane-Mele, Harper-Hofstadter models, ...) • Two open issues: ii. role of interactions ==> correlation effects ? (a.k.a., can one get generalizations of fractional quantum Hall effect?) experiments: • Synthetic quantum matter (e.g., via cold atoms) could help! Bloch, Esslinger, Fallani, Spielman, & many more ! Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies with ultracold atoms

  5. Motivation • Topological phases of matter: academic & practical interests ! i. paradigm models <==> real materials ? (e.g., Kitaev, Haldane, Kane-Mele, Harper-Hofstadter models, ...) • Two open issues: ii. role of interactions ==> correlation effects ? (a.k.a., can one get generalizations of fractional quantum Hall effect?) experiments: • Synthetic quantum matter (e.g., via cold atoms) could help! Bloch, Esslinger, Fallani, Spielman, • Quantum info. driven numerics (i.e., Tensor Networks), too! & many more ! Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies with ultracold atoms

  6. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  7. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  8. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling Topological character B z B x Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  9. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling Topological character B z Measurement of Zak phase via Ramsey interferometry B x in ultracold gases (SSH model) M. Atala, et al., Nat. Phys. 9, 795 (2013). Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  10. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling + Zeeman splitting ( undoubled ) Dirac point Topological character M. Creutz, PRL 83 2636 (1999) B z Measurement of Zak phase via Ramsey interferometry B x in ultracold gases (SSH model) M. Atala, et al., Nat. Phys. 9, 795 (2013). Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  11. Imbalanced Creutz Ladder Spin-dep., complex, tunnelling + Spin-flipping, real, tunnelling + Zeeman splitting Discrete chiral symmetry only! Class AIII ( undoubled ) Dirac point Topological character M. Creutz, PRL 83 2636 (1999) B z Measurement of Zak phase via Ramsey interferometry B x in ultracold gases (SSH model) M. Atala, et al., Nat. Phys. 9, 795 (2013). Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  12. Flat bands, AB cages & Edge States a c b + i˜ t 0 − ˜ − ˜ √ √ π t i / 2 i / 2 t π 1 / − 1 / 2 1 / 2 1 / 2 2 0 + i˜ t + i˜ t √ √ − i / 2 1 / 2 i / 2 − i / 2 i / 1 / 2 2 0 − ˜ ε = + 2˜ − ˜ ε = − 2˜ π ε l = 0 ε r = 0 t t π t t 0 + i˜ t Flat bands <==> basis of localized states (Aharanov-Bohm cages) Vidal, Mosseri, & Doucot, PRL 81, 5888 (1998) Topological <==> zero-energy (mid-gap) edge states Doubly degenerate ground at half filling (N p = N) Tovmasyan, van Nieuwenburg, & Huber, PRB 88, 220510(R) (2013) Takayoshi, Katsura, Watanabe, & Aoki, PRA 88, 063613 (2013) Huber & Altman, PRB 82, 184502 (2010) Tovmasyan, Peotta, Törmä ̈ , & Huber, arXiv:1608.00976 Sticlet, Seabra, Pollmann, & Cayssol, PRB 89, 115430 (2014) Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  13. Flat bands, AB cages & Edge States a c b + i˜ t Bragg techniques 0 − ˜ − ˜ √ √ π t i / 2 i / 2 t π 1 / − 1 / 2 1 / 2 1 / to measure edge states 2 2 0 in ultracold cold atoms + i˜ t (with steep enough potential) + i˜ t √ √ − i / 2 1 / 2 i / 2 − i / 2 i / 1 / 2 2 0 − ˜ ε = + 2˜ − ˜ ε = − 2˜ π ε l = 0 ε r = 0 Goldman,Beugnon, Gerbier, t t π t t 0 PRL 108, 255303 (2012). + i˜ t Flat bands <==> basis of localized states (Aharanov-Bohm cages) Vidal, Mosseri, & Doucot, PRL 81, 5888 (1998) Topological <==> zero-energy (mid-gap) edge states Doubly degenerate ground at half filling (N p = N) Tovmasyan, van Nieuwenburg, & Huber, PRB 88, 220510(R) (2013) Takayoshi, Katsura, Watanabe, & Aoki, PRA 88, 063613 (2013) Huber & Altman, PRB 82, 184502 (2010) Tovmasyan, Peotta, Törmä ̈ , & Huber, arXiv:1608.00976 Sticlet, Seabra, Pollmann, & Cayssol, PRB 89, 115430 (2014) Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  14. Flat bands, AB cages & Edge States a c b + i˜ t 0 ? − ˜ − ˜ √ √ π t i / 2 i / 2 t π 1 / − 1 / 2 1 / 2 1 / 2 2 0 + i˜ t + i˜ t √ √ − i / 2 1 / 2 i / 2 − i / 2 i / 1 / 2 2 0 − ˜ ε = + 2˜ − ˜ ε = − 2˜ π ε l = 0 ε r = 0 t t π t t 0 + i˜ t ? Flat bands <==> basis of localized states (Aharanov-Bohm cages) Vidal, Mosseri, & Doucot, PRL 81, 5888 (1998) Topological <==> zero-energy (mid-gap) edge states Doubly degenerate ground at half filling (N p = N) Zeeman Imbalance & Hubbard interactions bend bands / close gap ==> & cancel edge modes ... Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  15. Flat bands, AB cages & Edge States a c b + i˜ t 0 − ˜ − ˜ √ √ π t i / 2 i / 2 t π 1 / − 1 / 2 1 / 2 1 / 2 2 0 + i˜ t + i˜ t √ √ − i / 2 1 / 2 i / 2 − i / 2 i / 1 / 2 2 0 − ˜ ε = + 2˜ − ˜ ε = − 2˜ π ε l = 0 ε r = 0 t t π t t 0 + i˜ t Flat bands <==> basis of localized states (Aharanov-Bohm cages) Vidal, Mosseri, & Doucot, PRL 81, 5888 (1998) Topological <==> zero-energy (mid-gap) edge states Doubly degenerate ground at half filling (N p = N) Zeeman Imbalance & Hubbard interactions bend bands / close gap ==> & cancel edge modes ... Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  16. Flat bands, AB cages & Edge States a c b + i˜ t 0 − ˜ − ˜ √ √ π t i / 2 i / 2 t π 1 / − 1 / 2 1 / 2 1 / 2 2 0 + i˜ t + i˜ t √ √ − i / 2 1 / 2 i / 2 − i / 2 i / 1 / 2 2 0 − ˜ ε = + 2˜ − ˜ ε = − 2˜ π ε l = 0 ε r = 0 t t π t t 0 + i˜ t Outline of the attack plan: 1. Analytics: mappings onto effective Ising models for each transition 2. Numerics: matrix product states (MPS) & entanglement analysis 3. Experiments: sketch of proposal with assisted tunnelling in optical lattices Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

  17. Weak interactions: gap behaviour Indicator 1: compressibility gap vs. degeneracy split TI: oPM: ? 4 3 δ , ∆ 2 1 0 0 . 5 1 . 5 2 . 5 3 . 5 0 1 2 3 4 ∆ ε / ˜ t Synthetic Creutz-Hubbard model: matteo.rizzi@uni-mainz.de ICTP Workshop 2017 interacting topol. insul. Quantum Technologies arXiv:1612.02996 with ultracold atoms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend