semiclassical approach for interacting fermionic systems
play

Semiclassical approach for interacting fermionic systems: - PowerPoint PPT Presentation

Semiclassical approach for interacting fermionic systems: interference and echos in the Hubbard model Thomas Engl 1 , Peter Schlagheck 2 , Juan Diego Urbina 1 and Klaus Richter 1 1 Universit at Regensburg 2 Universit e de Li` ege March 18,


  1. Semiclassical approach for interacting fermionic systems: interference and echos in the Hubbard model Thomas Engl 1 , Peter Schlagheck 2 , Juan Diego Urbina 1 and Klaus Richter 1 1 Universit¨ at Regensburg 2 Universit´ e de Li` ege March 18, 2015 Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 1 / 10

  2. Introduction & Motivation Coherent backscattering 0.004 ϕ =0 ϕ =0.125 π ϕ =0.25 π probability ϕ =0.5 π ϕ =0, classical 0 223334 232334 233243 233432 242333 322334 323243 323432 332234 332342 333242 334332 343223 423233 432323 433322 [cf. F. Jendrzejewski, K. M¨ uller, J. Richard, A. Date, final state [TE, J. Dujardin, A. Arg¨ uelles, P. Schlagheck, K. Richter T. Plisson, P. Bouyer, A. Aspect and V. Josse, PRL 109 and J. D. Urbina, PRL 112 140403 (2014)] 195302 (2012)] → talk by Peter Schlagheck (Fr. 11h) Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 2 / 10

  3. Introduction & Motivation Coherent backscattering 0.004 ϕ =0 ϕ =0.125 π ϕ =0.25 π probability ϕ =0.5 π ϕ =0, classical 0 223334 232334 233243 233432 242333 322334 323243 323432 332234 332342 333242 334332 343223 423233 432323 433322 [cf. F. Jendrzejewski, K. M¨ uller, J. Richard, A. Date, final state [TE, J. Dujardin, A. Arg¨ uelles, P. Schlagheck, K. Richter T. Plisson, P. Bouyer, A. Aspect and V. Josse, PRL 109 and J. D. Urbina, PRL 112 140403 (2014)] 195302 (2012)] → talk by Peter Schlagheck (Fr. 11h) Echoes: ? [cf. http://en.wikipedia.org/wiki/Spin echo] Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 2 / 10

  4. Fermionic Hubbard model Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  5. Fermionic Hubbard model c † | n � = ˆ 1 ↓ | 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 � Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  6. Fermionic Hubbard model c † c † | n � = ˆ 2 ↑ ˆ 2 ↓ | 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 � Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  7. Fermionic Hubbard model c † | n � = − ˆ 3 ↑ | 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 � Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  8. Fermionic Hubbard model | n � = | 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 � Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  9. Fermionic Hubbard model Hamiltonian � � � � �� ˆ � c † c † c † c † c † H = ǫ j ˆ j σ ˆ c j σ − J ˆ j σ ˆ c j +1 σ + ˆ j +1 σ ˆ c j +1 σ + U ˆ j ↑ ˆ j ↓ ˆ c j ↓ ˆ c j ↑ σ = ↑ , ↓ j � � � � + κ ∗ � c † c † c † c † + κ ˆ j , ↓ ˆ c j +1 , ↑ − ˆ j +1 , ↓ ˆ c j , ↑ ˆ j +1 , ↑ ˆ c j , ↓ − ˆ j , ↑ ˆ c j +1 , ↓ Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  10. Fermionic Hubbard model J J Hamiltonian � � � � �� ˆ � c † c † c † c † c † H = ǫ j ˆ j σ ˆ c j σ − J ˆ j σ ˆ c j +1 σ + ˆ j +1 σ ˆ c j +1 σ + U ˆ j ↑ ˆ j ↓ ˆ c j ↓ ˆ c j ↑ σ = ↑ , ↓ j � � � � + κ ∗ � c † c † c † c † + κ ˆ j , ↓ ˆ c j +1 , ↑ − ˆ j +1 , ↓ ˆ c j , ↑ ˆ j +1 , ↑ ˆ c j , ↓ − ˆ j , ↑ ˆ c j +1 , ↓ Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  11. Fermionic Hubbard model J − κ κ J Hamiltonian � � � � �� ˆ � c † c † c † c † c † H = ǫ j ˆ j σ ˆ c j σ − J ˆ j σ ˆ c j +1 σ + ˆ j +1 σ ˆ c j +1 σ + U ˆ j ↑ ˆ j ↓ ˆ c j ↓ ˆ c j ↑ σ = ↑ , ↓ j � � � � + κ ∗ � c † c † c † c † + κ ˆ j , ↓ ˆ c j +1 , ↑ − ˆ j +1 , ↓ ˆ c j , ↑ ˆ j +1 , ↑ ˆ c j , ↓ − ˆ j , ↑ ˆ c j +1 , ↓ Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  12. Fermionic Hubbard model J U − κ κ J Hamiltonian � � � � �� ˆ � c † c † c † c † c † H = ǫ j ˆ j σ ˆ c j σ − J ˆ j σ ˆ c j +1 σ + ˆ j +1 σ ˆ c j +1 σ + U ˆ j ↑ ˆ j ↓ ˆ c j ↓ ˆ c j ↑ σ = ↑ , ↓ j � � � � + κ ∗ � c † c † c † c † + κ ˆ j , ↓ ˆ c j +1 , ↑ − ˆ j +1 , ↓ ˆ c j , ↑ ˆ j +1 , ↑ ˆ c j , ↓ − ˆ j , ↑ ˆ c j +1 , ↓ Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 3 / 10

  13. Semiclassical theory � Ht � � � ˆ � � e − i Propagator in Fock basis: K ( n , m , t ) = n � m � � Construct Path integral → talk by Juan Diego Urbina (Fr. 11h30) Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 4 / 10

  14. Semiclassical theory � Ht � � � ˆ � � e − i Propagator in Fock basis: K ( n , m , t ) = n � m � � Construct Path integral → talk by Juan Diego Urbina (Fr. 11h30) ⇒ Classical limit: � 2 , c † � � ˆ j σ ˆ c j σ → � φ j σ ( t ) ( k ,σ ′ ) 2 −| φ k σ ′ ( t ) | 2 � 1 − 2 | φ l σ ′′ ( t ) | 2 � c † j σ ( t ) φ k σ ′ ( t ) e − | φ j σ ( t ) | c k σ ′ → φ ∗ � ˆ j σ ˆ ( l ,σ ′′ )=( j ,σ ) Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 4 / 10

  15. Semiclassical theory � Ht � � � ˆ � � e − i Propagator in Fock basis: K ( n , m , t ) = n � m � � Construct Path integral → talk by Juan Diego Urbina (Fr. 11h30) ⇒ Classical limit: � 2 , c † � � ˆ j σ ˆ c j σ → � φ j σ ( t ) ( k ,σ ′ ) 2 −| φ k σ ′ ( t ) | 2 � 1 − 2 | φ l σ ′′ ( t ) | 2 � c † j σ ( t ) φ k σ ′ ( t ) e − | φ j σ ( t ) | c k σ ′ → φ ∗ � ˆ j σ ˆ ( l ,σ ′′ )=( j ,σ ) Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 4 / 10

  16. Semiclassical theory � Ht � � � ˆ � � e − i Propagator in Fock basis: K ( n , m , t ) = n � m � � Construct Path integral → talk by Juan Diego Urbina (Fr. 11h30) ⇒ Classical limit: � 2 , c † � � ˆ j σ ˆ c j σ → � φ j σ ( t ) ( k ,σ ′ ) 2 −| φ k σ ′ ( t ) | 2 � 1 − 2 | φ l σ ′′ ( t ) | 2 � c † j σ ( t ) φ k σ ′ ( t ) e − | φ j σ ( t ) | c k σ ′ → φ ∗ � ˆ j σ ˆ ( l ,σ ′′ )=( j ,σ ) Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 4 / 10

  17. Semiclassical theory � Ht � � � ˆ � � e − i Propagator in Fock basis: K ( n , m , t ) = n � m � � Construct Path integral → talk by Juan Diego Urbina (Fr. 11h30) ⇒ Classical limit: � 2 , c † � � ˆ j σ ˆ c j σ → � φ j σ ( t ) ( k ,σ ′ ) 2 −| φ k σ ′ ( t ) | 2 � 1 − 2 | φ l σ ′′ ( t ) | 2 � c † j σ ( t ) φ k σ ′ ( t ) e − | φ j σ ( t ) | c k σ ′ → φ ∗ � ˆ j σ ˆ ( l ,σ ′′ )=( j ,σ ) Stationary phase analysis ⇒ Sum over classical trajectories Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 4 / 10

  18. Semiclassical propagator 1 � � � ˆ Ht � � � e − i i � � R γ + i µ γ π K ( m , n , t ) = m � n ≈ A γ e � � 2 γ : n → m t d t ′ � J ( t ′ ) − H ( cl ) ( ψ ∗ ( t ′ ) , ψ ( t ′ )) � � θ ( t ′ ) ˙ � Classical action: R γ = 0 1 TE, J. D. Urbina and K. Richter, Theor. Chem. Acc. 133 , 1563; arXiv:1409.4196 Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 5 / 10

  19. Semiclassical propagator 1 � � � ˆ Ht � � � e − i i � � R γ + i µ γ π K ( m , n , t ) = m � n ≈ A γ e � � 2 γ : n → m Classical trajectory γ : n → m : | ψ j σ (0) | 2 = n j σ | ψ j σ ( t ) | 2 = m j σ t d t ′ � J ( t ′ ) − H ( cl ) ( ψ ∗ ( t ′ ) , ψ ( t ′ )) � � θ ( t ′ ) ˙ � Classical action: R γ = 0 1 TE, J. D. Urbina and K. Richter, Theor. Chem. Acc. 133 , 1563; arXiv:1409.4196 Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 5 / 10

  20. Semiclassical propagator 1 � � � ˆ Ht � � � e − i i � � R γ + i µ γ π K ( m , n , t ) = m � n ≈ A γ e � � 2 γ : n → m Classical trajectory γ : n → m : | ψ j σ (0) | 2 = n j σ | ψ j σ ( t ) | 2 = m j σ ψ = ∂ H ( cl ) i � ˙ ∂ ψ ∗ t d t ′ � J ( t ′ ) − H ( cl ) ( ψ ∗ ( t ′ ) , ψ ( t ′ )) � � θ ( t ′ ) ˙ � Classical action: R γ = 0 1 TE, J. D. Urbina and K. Richter, Theor. Chem. Acc. 133 , 1563; arXiv:1409.4196 Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 5 / 10

  21. Semiclassical propagator 1 � � � ˆ Ht � � � e − i i � � R γ + i µ γ π K ( m , n , t ) = m � n ≈ A γ e � � 2 γ : n → m Classical trajectory γ : n → m : θ ( γ =1) (0) θ ( γ =2) (0) | ψ j σ (0) | 2 = n j σ | ψ j σ ( t ) | 2 = m j σ θ ( γ =3) (0) ψ = ∂ H ( cl ) i � ˙ ∂ ψ ∗ t d t ′ � J ( t ′ ) − H ( cl ) ( ψ ∗ ( t ′ ) , ψ ( t ′ )) � � θ ( t ′ ) ˙ � Classical action: R γ = 0 1 TE, J. D. Urbina and K. Richter, Theor. Chem. Acc. 133 , 1563; arXiv:1409.4196 Thomas Engl (Uni Regensburg) Interference in the Fermi-Hubbard model March 18, 2015 5 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend