semiclassical approach to pairing of drip line nuclei
play

Semiclassical Approach to Pairing of Drip-Line Nuclei P. Schuck IPN - PowerPoint PPT Presentation

Semiclassical Approach to Pairing of Drip-Line Nuclei P. Schuck IPN Orsay and LPMMC Grenoble CONTENT Thomas-Fermi approximation for gap, TF-BCS Drip-line situations, drip-line nuclei BCS vs HFB -corrections to LDA Applications of TF-BCS


  1. Semiclassical Approach to Pairing of Drip-Line Nuclei P. Schuck IPN Orsay and LPMMC Grenoble

  2. CONTENT Thomas-Fermi approximation for gap, TF-BCS Drip-line situations, drip-line nuclei BCS vs HFB � -corrections to LDA Applications of TF-BCS and TF-HFB Conclusions

  3. Drip-line nuclei 60 U(R) 40 L r= ω 2 / ω 1 =0.1 R r=0.2 r=0.4 20 r=1 0 10 20 30 40 50 60 70 80 90 100 R Overflow situations of superfluid fermions in finite mean field potential → nuclei (drip line), nuclei in Wigner Seitz cells in crust of neutron stars, Cold atoms etc.

  4. : TF; black: quantal; slab with pocket, depth = - 40 MeV and cut off + 50 MeV 1.4 Thomas-Fermi 1.2 Quantal 1 ∆ (µ) MeV 0.8 0.6 0.4 0.2 0 -40 -30 -20 -10 0 10 20 30 40 50 µ (MeV) X.Vinyas, P.S., PRL 107

  5. Thomas-Fermi approach to pairing. TF-BCS Gap equation ∆ n ′ � � n | v | n ′ ¯ n ′ � ∆ n = (1) ( e n ′ − µ ) 2 + ∆ 2 � 2 n ′ n ′ Time reversal invariance: n | rr ′ � ≡ � r | n �� n | r ′ � ≡ ρ n ( r , r ′ ) � n ¯ TF: ρ n ( r , r ′ ) → δ ( E n − p 2 2 m − U ( R )) TF-gap equation � ∆( E ′ ) E ′ g ( E ′ ) V ( E , E ′ ) ∆( E ) = ( E ′ − µ ) 2 + ∆ 2 ( E ′ ) � 2 dE κ ( E ) δ ( E − p 2 � + O ( � 2 ) κ n = u n v n → κ ( r , p ) = 2 m − U ( R ))

  6. HFB calculation in double HO-potential r=0.1 r=0.2 r=0.4 r=1 0.8 E qp 0.4 10 15 20 25 30 µ X. Vinyas, P.S. et al., PRA 90. Figure prepared by A. Pastore. Evolution of the lowest HFB-quasi-particle energy as a function of µ . Thomas-Fermi pour HFB later...

  7. HFB for some drip-line nuclei ∆ LCS (a) ∆ LCS 1.5 1.5 < ∆ uv> < ∆ uv> ∆ exp exp n [MeV] n [MeV] Mo SLy4 1 Ca SLy4 1 (e) ∆ ∆ 0.5 0.5 20 40 60 80 100 40 60 80 100 120 N N Vertical broken line corresponds to drip-line. SLy4 force is used. Pastore, Margueron, P.S., Vinyas, PRC 88.

  8. LDA can become very bad ... 2 1,8 1,6 LDA 1,4 A = 500 Z = 50 1,2 ∆ (R) (MeV) 1 0,8 0,6 0,4 TF-BCS 0,2 0 0 5 10 15 20 25 30 35 40 45 R (fm) Wigner-Seitz cell; SLy4 + pairing

  9. HFB BCS + TF-BCS 3 3 1800 Sn 1800 Sn LOC (R) [MeV] LOC (R) [MeV] 2 2 1100 Sn 1100 Sn 1 1 500 Zr 500 Zr n n ∆ ∆ 250 Zr 250 Zr 0 10 20 30 40 50 0 10 20 30 40 50 R [fm] R [fm] Wigner-Seitz cells with SLy4. Some differences between HFB (left) and BCS (right) can be seen. TF-BCS: broken lines.

  10. However, BCS can also become quite wrong ... 20 18 HFB BCS 16 14 E qp [MeV] 12 10 8 6 4 2 0 80 120 160 200 µ F [MeV] Deep Woods-Saxon potential from steep violet to soft (HO-like) red

  11. What is reason for failure? U eff . = U ( R ) − µ + ∆ 2 ( R ) E qp 0 0 µ =120 MeV µ =120 MeV µ =140 MeV µ =140 MeV µ =160 MeV µ =160 MeV -50 U eff (R) [MeV] U eff (R) [MeV] µ =180 MeV µ =180 MeV -50 µ =200 Mev µ =200 Mev -100 -100 -150 0 4 8 12 16 20 0 4 8 12 16 20 R [fm] R [fm] Pockets of different Woods-Saxon potentials with varying width parameters a1 = 1, 11

  12. µ=24 0.4 µ=26 0.2 v nl (R) 0 -0.2 r=0.1 -0.4 0 5 10 15 20 R

  13. Anomalous density. Wigner-Kirkwood � -expansion: κ = κ 0 ≡ κ LDA + κ 2 (2) � h 4 E 3 − 3∆ 2 4 E 5 + 5 h 2 ∆ 2 � 2 p 2 � � 2 ∇ 2 ∆ κ 2 = − 12 E 7 m 4 m 4 E 5 − 5 h ∆ 3 � 2 p 2 � � 2 ( ∇ ∆) 2 � 3 h ∆ ∆ + 4 E 7 + 12 E 5 m 4 m � ∆ � � 2 4 E 3 − 3∆ 3 4 m 2 ∇ 2 U + 8 E 5 � h ∆ � � 2 2 E 5 − 5 h ∆ 3 � 2 p 2 ( ∇ U ) 2 + +1 m ∇ 2 U � � − 4 E 7 4 m 3 � 1 � � 2 2 E 3 − 5 h 2 ∆ 2 � � + ∇ U · ∇ ∆ (3) , 2 E 7 4 m

  14. Strinati � e k − µ ( r ) � 2 ∆( r ) − 1 2 E ( r , 0 , k ) + 1 ∆( r ) � � dk � dk 2 E 3 ( r , 0 , k ) ∇ 2 g ∆( r ) = (4) . r (2 π ) 3 2 (2 π ) 3 4 m 1.2 (k F a F ) -1 = -1 (k F a F ) -1 = 0 (k F a F ) =-1 (k F a F ) =0 (k F a F ) =1 39 (k F a F ) -1 = 1 1 T=0.9T c T=0.9T c T=0.9T c 43 1 19 0.8 j( ρ )/j max 0.0002 Θ / Θ cl 0.6 0.00015 0.5 Θ / Θ cl 3 0.0001 0.4 5e-05 0 0.2 0 0.01 0.02 0.03 0.04 0 (k F a F ) -1 =-1 (k F a F ) -1 =0 (k F a F ) -1 =1 Ω 1 T=0.5T c T=0.5T c T=0.5T c 0 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ω j( ρ )/j max 0.9 0.8 0.5 0.7 0.6 0 (k F a F ) -1 =-1 (k F a F ) -1 =0 (k F a F ) -1 =1 0.5 T=0 T=0 T=0 y 1 0.4 0.3 j( ρ )/j max 0.2 0.5 0.1 0 x 0 0 5 10 15 20 0 2 4 6 8 0 2 4 6 k F ρ

  15. Conclusions: BCS good approximation for containers with steep surface. TF-BCS very good approximation to quantal BCS. BCS not applicable for wide HO. Pairing strongly quenched at the drip. � -expansion for HFB. Applications of TF-BCS and TF-HFB

  16. DEAR XAVIER: ALL THE BEST FOR RETIREMENT! THAT OUR NICE COLLABORATION STILL WILL GO ON...... AND ON!! THANK YOU!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend