take a walk on the wild side the drip line
play

Take a walk on the wild side: the drip-line Forewords Part I. - PowerPoint PPT Presentation

Take a walk on the wild side: the drip-line Forewords Part I. Nuclear forces towards the drip line By courtesy of A. Bonnaccorso Part II. Proton neutron forces in mirror nuclei. Forewords Broad resonance Narrow resonance t = ! E* E*


  1. Take a walk on the wild side: the drip-line Forewords Part I. Nuclear forces towards the drip line By courtesy of A. Bonnaccorso Part II. Proton neutron forces in mirror nuclei.

  2. Forewords

  3. Broad resonance Narrow resonance Γ ⋅ t = ! E* E* Width of the resonance proportional to the probability to tunnel through centrifugal barrier B ℓ = ℓ ( ℓ + 1) " 2 Γ ( ℓ , E *, SF ) 2 µ R 2 When the barrier is large or/and E* small ν ν Longer time to tunnel through the barrier -> small Γ -> behave as quasi bound state ℓ Low Large ℓ bound In case of a broad resonance, a large part of the unbound wave function lies in the continuum

  4. Part I: Nuclear forces towards the drip line Broad resonance Narrow resonance B ℓ = ℓ ( ℓ + 1) " 2 Γ ⋅ t = ! 2 µ R 2 Width of the resonance proportional to the probability to tunnel through centrifugal barrier When it takes longer time to tunnel through the barrier -> width is small > quasi bound state ν ν In case of a resonance, part of the wave function lies in the continuum ℓ Low Large ℓ In the case of proton orbits, the Coulomb potential leads to an additional barrier. States may behave as quasi-bound states when much lower than the barriers. π ν

  5. Part I. Nuclear forces towards the drip-line

  6. Nuclear forces towards the drip-line viewed from the study of neutron-rich F isotopes 14 20 16 21 F 22 F 23 F 24 F 27 F 20 F 25 F 26 F 28 F 31 F 29 F 30 F d 5/2 20 O 19 O 21 O 22 O 23 O 24 O 25 O 26 O 27 O 28 O p 1/2 22 N 18 N 19 N 20 N 21 N 23 N 24 N 25 N 26 N 27 N 18 C 17 C 19 C 20 C 21 C 22 C 24 C 23 C s 1/2 d 3/2 d 5/2 Motivation / Scientific context Study of 26,24 F using various experimental techniques at GANIL and GSI Vancouver July 2015

  7. Motivations / Scientific context 14 20 16 Structural change at N=14 14 C 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 16 O E(2 + ) (MeV) 24 O 5 22 O 22 O 23 O 25 O 24 O 26 O 28 O 27 O 21 N 23 N 22 N 24 N 25 N 26 N 27 N 20 C 0 21 C 22 C 23 C 14 16 20 C 24 C 8 Neutron Number C. R. Hofmann et al. PLB 672 (2009) M. Stanoiu et al. PRC 78 (2008) M. Stanoiu et al. PRC 69 (2004) 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei)

  8. Motivations / Scientific context 14 20 16 Structural change at N=14 14 C 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 16 O E(2 + ) (MeV) 24 O 5 22 O 22 O 23 O 25 O 24 O 26 O 28 O 27 O 21 N 23 N 22 N 24 N 25 N 26 N 27 N 20 C 0 21 C 22 C 23 C 14 16 20 C 24 C 8 Neutron Number 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei) Extension of the valley of stability much further in the F than in O isotopic chain (challenging theoretical models in general for drip-line prediction)

  9. Motivations / Scientific context 14 20 16 Ne 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 22 O 23 O 25 O 24 O 26 O 28 O 27 O O 21 N 23 N 22 N 24 N 25 N 26 N 27 N F 21 C 22 C 23 C 20 C 24 C E. Lunderberg PRL 108 (2012) B. Jurado PLB 649 (2007) 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei) Extension of the valley of stability much further in the F than in O isotopic chain Reduction of pairing interaction at the drip-line ? Constraints on models used to describe neutron stars: rotation, cooling … ??

  10. Motivations / Scientific context 26 F 14 20 16 ν π 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F d 3/2 0.77MeV 23 O 25 O 22 O 26 O 28 O 16 24 O 27 O 15MeV d 5/2 14 24 O core 21 N 23 N 22 N 24 N 8 25 N 26 N 27 N 8 21 C 22 C 23 C 20 C 24 C J=1-4 + C. R. Hofmann PRL 100 (2008) 22 O and 24 O viewed as magic nuclei Extension of the valley of stability much further in the F than in O isotopic chain Evolution of pairing interaction at the drip line Constraints on models used to describe neutron stars: rotation, cooling … ?? Evolution of proton neutron forces when reaching the drip-line consequences for r-process nucleosynthesis, shell evolution towards the drip-line

  11. Motivations / Scientific context 26 F 14 20 16 0 Int(J) (MeV) S n 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F -0.5 <Int> -1 <Int> 25 O 23 O 24 O 26 O 28 O 22 O 27 O -1.5 21 N 23 N 22 N 24 N 25 N 26 N 27 N -2 Normal pn Quenched pn 21 C 22 C 23 C 20 C 24 C 1 2 3 4 J 22 O and 24 O viewed as magic nuclei Extension of the valley of stability much further in the F than in O isotopic chain Evolution of pairing interaction at the drip line Constraints on models used to describe neutron stars: rotation, cooling … ?? Evolution of proton neutron forces when reaching the drip-line consequences for r-process nucleosynthesis, shell evolution towards the drip-line 26 F g.s.: J=1 + / J=4 + isomer / J=2 + prompt γ -decay / J=3 + neutron unbound

  12. Discovery ¡of ¡a ¡4 + ¡isomer ¡in ¡ 26 F ¡ <2ms ¡ 10pps ¡ 26 F ¡ 26 F ¡ others ¡ β -­‑gated ¡ degrader ¡ Si(Li) ¡ ∆E 1 ¡ ∆E 2 ¡ ∆E 3 ¡ DSSSD ¡ N γ ¡ β - ¡ 2.2(1)ms ¡ 4 + ¡ Energy ¡Loss ¡ 643 ¡keV ¡ ¡ M3 ¡ 2 ¡10 3 ¡ 7.7 ¡(2)ms ¡ β - ¡ 1 + ¡ 26 F ¡ 10 3 ¡ 2 ¡ 4 ¡ 6 ¡ 8 ¡ 10 ¡12 ¡14 ¡16 ¡ Time ¡(ms) ¡ Time ¡of ¡flight ¡

  13. Beta-­‑Decay ¡of ¡ 26 F ¡ Unexpected ¡decay ¡curve ¡! ¡ Ge ¡ Different ¡lifeUmes ¡! ¡ 10pps ¡ 26 F ¡ degrader ¡ Si(Li) ¡ ∆E 1 ¡ ∆E 2 ¡ ∆E 3 ¡ DSSSD ¡ β -­‑gated ¡

  14. ISOMER ¡ GROUND ¡STATE ¡ Lepailleur ¡et ¡al. ¡Phys. ¡Rev. ¡Le2. ¡110 ¡(2013) ¡

  15. Discovery of a J=2 + excited state in 26 F MCP M. Stanoiu et al. PRC 85 (2012) wedge 36 S 7 5 A . M e V Secondary 3 A e , v / c = beams 0 . 3 4 µ SISSI target 70 BaF 2 N γ 660 (2 + → 1 + ) 26 F 20 Thick Target: Δ E 26 Ne 9+ S n C (112 mg.cm -2 ) 15 + 26 F 800 ‘active’ Plastic 10 24 O 103mg.cm -2 600 22 N 5 400 19 C SPEG 200 0 1000 2000 3000 4000 E(keV) 2.5 2.75 3 A/Q

  16. J=3 + unbound states in 26 F studied at GSI/LAND Proton neutrons 1d 3/2 2s 1/2 1d 5/2 26 F 17 25 F 16 27 Ne 17 26 F-> 25 F+n 20 Counts/200keV J=3 + 15 J=2,3 + 10 5 0 0 1 2 3 4 5 Excellent J=3 + candidate at 260 keV M. Vandebrouck, preliminary Agrees with work of Franck et al. PRC 84 (2011)

  17. Comparision ¡to ¡theory: ¡effect ¡of ¡conUnuum ¡in ¡ 26 F ¡ ¡ ¡ Calcula;ons ¡J. ¡Holt ¡et ¡al. ¡ S.K ¡Bogner ¡et ¡al. ¡113 ¡(2014) ¡ ¡ ¡ 26 F 2,3 + ¡ 0 Int(J) (MeV) S n -0.5 -1 3 + ¡ -1.5 S n ¡ -2 theory ¡ exp 1 2 3 4 J Excellent ¡agreement ¡for ¡the ¡J=2,4 + ¡energies ¡ ¡ Models ¡not ¡able ¡yet ¡to ¡calculate ¡accurate ¡g.s. ¡binding ¡energy ¡ SystemaUc ¡shi` ¡in ¡energy ¡of ¡unbound ¡states ¡-­‑> ¡Treatment ¡of ¡the ¡conUnuum ¡is ¡needed ¡

  18. Comparision ¡to ¡theory: ¡ 24 F ¡ ¡ ¡ + (1 + ,2 + ) ¡ 4 + ) 24 F (4 (2 + ,4 + ) ¡ + 3.5 2 + 2 + 1 + ) (3 + 4 3 + 24 F ¡ 3 + ) (3 + ) ¡ (4 + 3 + 0 + 0 2.5 ν π + 4 (4 + ) ¡ Energy (MeV) + 4 d 3/2 ¡ 2 + 1 + s 1/2 ¡ 1 s 1/2 ¡ + + 1 1 d 5/2 ¡ 14 ¡ 1.5 22 O ¡core ¡ ¡ + 0 8 ¡ 8 ¡ 1 + J=2-­‑3 + ¡ 2 + + 2 0.5 2 + + 3 2 + + + + 0 1 3 3 3 MBPT Expt. USDb IM-SRG NN+3N-full Very ¡good ¡agreement ¡for ¡all ¡states ¡ L. ¡Caceres, ¡…, ¡J. ¡Holt ¡et ¡al. ¡accepted ¡in ¡PRC ¡ ¡

  19. Conclusions Study of the 26 F states (J=1-4) + using several experimental techniques at GANIL and GSI (isomer and in-beam decay, neutron spectroscopy) Textbook case: parabola Int(J) for odd-odd nucleus on top of magic core 24 O (the further from stability including unbound state) Agreement with theory using realistic interactions for the J=2,4 + Strong shift in energy for the state in the continuum J=3 + Constraint on models aiming at studying pn interactions toward drip-line (shell evolution for r -process nucleosynthesis) Future: Study of the same interaction in 28 F (all unbound states) -> What are the mean and residual pn interactions there ?

  20. Part ¡II: ¡Proton ¡neutron ¡forces ¡in ¡mirror ¡nuclei ¡

  21. Change of pn interaction between mirror nuclei : effect of drip line ? ν π d 5/2 ~1.3MeV s 1/2 ~14MeV 6 397 1 - 2 p 1/2 298 3 - B coul ~4.3MeV 15 F 16 F 120 0 - s 1/2 16 F 2 - 14 O 15 O 16 N 7 9 How does the 16 F 15 N 16 N level scheme looks like ? p 1/2 ν π 14 C 15 C d 5/2 ~11.4MeV π ~2.4MeV s 1/2 p 1/2 8 p 1/2 s 1/2 ν 6 6 2 2 E*( 14 O) = 5.173 MeV , E*( 14 C)= 6.093 MeV The coupling of s 1/2 and p 1/2 nucleons leads to J=0 - , 1 - states 16 N d 5/2 and p 1/2 nucleons leads to J=3 - , 4 - states

  22. Study of unbound states in 16 F using resonant elastic scattering 2 ' 2 d Z Z e • Rutherford elastic scattering : ⎡ ⎤ σ = ⎢ ⎥ 2 p + 15 O → p + 15 O d 4 E sin( / 2 ) Ω θ ⎣ ⎦ • Elastic scattering through a resonant state: p + 15 O → 16 F* → p + 15 O • Use of inverse kinematics since 15 O is radioactive (method -> Gol’dberg 1993) • Thick ‘proton’ target in which the beam is eventually stopped Si detector proton target (CH2) p 3 1 Beam 2 2 1.01 MeV A+1 Y 3 1 A X N +p d σ 1 2 Position ⇒ E x d Ω 3 Width of the peak ⇒ Γ Shape ⇒ J π E p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend