fermionic dm higgs portal an eft approach
play

Fermionic DM Higgs Portal An EFT approach Michael A. Fedderke - PowerPoint PPT Presentation

Fermionic DM Higgs Portal An EFT approach Michael A. Fedderke University of Chicago Based on 1404.2283 [hep-ph] (MF , Chen, Kolb, Wang) Unlocking the Higgs Portal ACFI, UMass, Amherst 2 May 2014 2012 discovery of (a) ~125GeV Higgs boson


  1. Fermionic DM Higgs Portal � An EFT approach Michael A. Fedderke University of Chicago Based on 1404.2283 [hep-ph] (MF , Chen, Kolb, Wang) Unlocking the Higgs Portal ACFI, UMass, Amherst 2 May 2014

  2. 2012 discovery of (a) ~125GeV Higgs boson natural motivation for exploring Higgs Portal (HP) couplings � � L ⊃ H † H O New � One avenue for particle DM to couple to SM � � This talk � Bottom-up EFT analysis of the allowed parameter space for the lowest dimension ‘scalar’ and ‘pseudoscalar’ HP couplings of fermionic WIMP DM � in light of recent experimental limits. � � (See also results in Xiao-Gang He’s talk yesterday for scalar DM case) � � Previous similar work � 1112.3299 [Djouadi, et al.] � 1203.2064 [Lopez-Honorez, Schwetz, Zupan] � 1309.3561 [Greljo, et al.] � 1402.6287 [De Simone, Giudice, Strumia] � 2

  3. Dimension 5 fermionic DM (WIMP) Higgs portal with scalar (CP-even) and pseudoscalar (CP-odd) couplings � ⇣ ⌘ ∂ − M 0 ) χ + H † H χ ( i/ � L = L SM + ¯ Λ 1 ¯ χχ + c 5 Λ 5 ¯ χ i γ 5 χ c 1 � Singlet Dirac fermion � χ ∼ ( 1 , 1 , 0) 1 (Majorana: ) � χ → 2 χ √ � Convenient re-parametrisation � ∂ − M 0 ) χ + 1 Λ H † H (cos θ ¯ � χ ( i/ L = L SM + ¯ χχ + sin θ ¯ χ i γ 5 χ ) � Good for numerical parameter scan � Mixes up suppression scales (NB for judging unitarity bounds) 3

  4. Standard lore for WIMP direct detection bounds � � H † H ¯ The `pseudoscalar’ (C)P-odd coupling � χ i γ 5 χ is momentum-transfer suppressed � = velocity suppressed ( ) for elastic v 2 ∼ 10 − 6 scattering. � � H † H ¯ Only the ‘scalar’ (C)P-even coupling is � χχ relevant. � � Direct detection bounds strong. � � Pseudoscalar coupling strongly favoured ( ) � θ ∼ π / 2 � However… 4

  5. …after EWSB, � χχ � h v i 2  ✓ ◆� � χ i/ L � ¯ ∂χ � M 0 ¯ χ i γ 5 χ cos θ ¯ χχ + sin θ ¯ 2 Λ � ✓ ◆ ✓ ◆ h v i h + 1 � + Λ − 1 2 h 2 χ i γ 5 χ . cos θ ¯ χχ + sin θ ¯ � Chiral rotation to real-mass basis. � � Modifies the couplings and mass. ✓ ◆  � h v i h + 1 χ M χ + Λ − 1 2 h 2 χ i/ L � ¯ ∂χ � ¯ χ i γ 5 χ , cos ξ ¯ χχ + sin ξ ¯ Scalar Pseudoscalar cos θ � h v i 2  � cos ξ = M 0 sin ξ = M 0 M sin θ 2 Λ M 0 M s✓ ◆ 2 ◆ 2 M 0 � h v i 2 ✓ h v i 2 sin 2 θ 2 Λ cos θ M = + 2 Λ 5

  6. …after EWSB, � χχ � h v i 2  ✓ ◆� � χ i/ L � ¯ ∂χ � M 0 ¯ χ i γ 5 χ cos θ ¯ χχ + sin θ ¯ 2 Λ � ✓ ◆ ✓ ◆ h v i h + 1 � + Λ − 1 2 h 2 χ i γ 5 χ . cos θ ¯ χχ + sin θ ¯ � Chiral rotation to real-mass basis. � � Modifies the couplings and mass. ✓ ◆  � h v i h + 1 χ M χ + Λ − 1 2 h 2 χ i/ L � ¯ ∂χ � ¯ χ i γ 5 χ , cos ξ ¯ χχ + sin ξ ¯ Scalar Pseudoscalar cos θ � h v i 2  � cos ξ = M 0 sin ξ = M 0 M sin θ 2 Λ M 0 M s✓ ◆ 2 ◆ 2 M 0 � h v i 2 ✓ h v i 2 sin 2 θ 2 Λ cos θ M = + 2 Λ 6

  7. Motivates a parameter scan of the low energy Lagrangian considering both couplings: � � ✓ ◆  � h v i h + 1 χ M χ + Λ − 1 2 h 2 χ i/ L � ¯ ∂χ � ¯ χ i γ 5 χ cos ξ ¯ χχ + sin ξ ¯ � � For the purposes of low energy phenomenology, need not explicitly account for the rotation: � so long as the WIMP DM freezes out after the EW phase transition ( ) don’t need to compute M/T F ∼ 20 relevant observables above EWSB scale. � � It is however still important in relating low energy limits to the gauge-invariant EFT operators, and the EFT to some renormalizable model of the HP. � � 7

  8. Motivates a parameter scan of the low energy Lagrangian considering both couplings: � � ✓ ◆  � h v i h + 1 χ M χ + Λ − 1 2 h 2 χ i/ L � ¯ ∂χ � ¯ χ i γ 5 χ cos ξ ¯ χχ + sin ξ ¯ � � Analysis: � � WIMP freeze-out used to fix � Λ parameter space constrained by � ( M, ξ ) Invisible Higgs width � LUX direct detection bounds � 8

  9. Annihilation cross-sections � � Only look at 2-body decays; 3- and 4-body decays phase-space suppressed. Only tree level. � � � Channels: f ¯ f hh ¯ f ( k ) χ h ( k ) ¯ ¯ h ( k ) χ χ ∆ h ( P 2 ) ∆ h ( P 2 ) [ hf ¯ + k ↔ k ′ f ] [ hhh ] h ( k ′ ) h ( k ′ ) χ χ f ( k ′ ) ¯ χ ⟨ v ⟩ ⟨ v ⟩ ZZ W + W − O ( Λ − 1 ) ¯ Z ν ( k ) W − ν ( k ) ¯ χ χ ∆ h ( P 2 ) ∆ h ( P 2 ) [ hZZ ] µ ν [ hWW ] µ ν Z µ ( k ′ ) W + µ ( k ′ ) χ χ ⟨ v ⟩ ⟨ v ⟩ 9

  10. Also have contributions to via - and - O ( Λ − 2 ) hh t u channel diagrams ⟨ v ⟩ � Higher order h ( k ) ¯ χ - e ff ects are generally small + k ↔ k ′ - expect other corrections at same order from neglected operators h ( k ′ ) h ( k ′ ) χ We ‘ignore’ these. (see backup) ⟨ v ⟩ � 10 0 � χχ → ab ) In the NR limit 10 − 1 ( ) s ≈ 4 M 2 + M 2 v 2 10 − 2 hh BR (¯ relevant for W + W − 10 − 3 Z 0 Z 0 freeze-out away f f ¯ � f 10 − 4 from thresholds 10 1 10 2 10 3 and resonances. M [GeV] 10

  11. Most of the annihilation (except contact) through s- channel Higgs. Scale as � � 2 + ( m h Γ h /s ) 2 i − 1 h� � 1 − m 2 h /s σ ∼ � � DM contribution to the Higgs width very important for : 2 M < m h Huge compared to SM width � ◆ 2 s 1 − 4 M 2 ✓ 1 TeV  � 1 − 4 M 2 cos 2 ξ 3 . 034 × 10 2 MeV � � � Γ h → ¯ χχ = × m 2 m 2 Λ h h � (for Dirac; halved for Majorana) � Will return to this for constraints… 11

  12. Gondolo and Gelmini, Nucl. Phys. B 360 (1991) 145-179. Srednicki, Watkins and Olive, Nucl. Phys. B 310 (1988) 693. Kolb and Turner, The Early Universe (Westview),1994. WIMP relic density from Boltzmann Equation � n 2 � n 2 ⇥ ⇤ n + 3 Hn = �h σ v Møller i ˙ EQ � Numerical solution, using full thermal averaging (important near resonances and below thresholds) � ⇤ − 1 Z ∞ 4 M 2 σ ( s ) ( s � 4 M 2 ) p s K 1 ( p s/T ) ds 8 M 4 TK 2 � ⇥ h σ v Møller i = 2 ( M/T ) � Defining , Y = n/s ⇢ 1 � � × Ms 0 self-conjugate DM Ω = Y ∞ � 2 non-self-conjugate DM ρ c � Use to fix . Ω DM h 2 � Planck = 0 . 1186(31) Λ Planck Collaboration, 1303.5076 [hep-ph] � 12

  13. EFT suppression scale for correct relic abundance � � Dirac Majorana Dirac Majorana Scalar � 1 . 0 1 . 0 Λ < h v i 10 4 Λ < h v i Dirac 10 4 1 . 0 10 4 � 0 . 8 0 . 8 0 . 8 � 0 . 6 0 . 6 0 . 6 � Λ [GeV] Λ [GeV] Λ [GeV] cos 2 ξ cos 2 ξ cos 2 ξ � 0 . 4 0 . 4 0 . 4 10 3 10 3 10 3 � 0 . 2 0 . 2 0 . 2 � Ω h 2 = 0 . 1186 0 . 0 ⟨ v ⟩ 10 1 10 2 10 3 Pseudo- Ω h 2 = 0 . 1186 Ω h 2 = 0 . 1186 � M [GeV] ⟨ v ⟩ ⟨ v ⟩ 0 . 0 0 . 0 scalar 10 1 10 2 10 3 10 1 10 2 10 3 M [GeV] M [GeV] � � Λ = 2 M Λ = M � Now fix the suppression scale at this value. 13

  14. EFT suppression scale for correct relic abundance 2 † h i 1 2 L � 3 ( H 1 � H ) ⇥ � v O 3 2 ⇤ h v i h + h O Λ χ Λ 2 Λ 2 χ � Dirac Majorana Dirac Majorana Scalar � 1 . 0 1 . 0 Λ < h v i 10 4 Λ < h v i Dirac 10 4 1 . 0 10 4 � 0 . 8 0 . 8 0 . 8 � 0 . 6 0 . 6 0 . 6 � Λ [GeV] Λ [GeV] Λ [GeV] cos 2 ξ cos 2 ξ cos 2 ξ � 0 . 4 0 . 4 0 . 4 10 3 10 3 10 3 � 0 . 2 0 . 2 0 . 2 � Ω h 2 = 0 . 1186 0 . 0 ⟨ v ⟩ 10 1 10 2 10 3 Pseudo- Ω h 2 = 0 . 1186 Ω h 2 = 0 . 1186 � M [GeV] ⟨ v ⟩ ⟨ v ⟩ 0 . 0 0 . 0 scalar 10 1 10 2 10 3 10 1 10 2 10 3 M [GeV] M [GeV] � � Λ = 2 M Λ = M � Now fix the suppression scale at this value. 14

  15. Invisible width constraint � Already noted that invisible width SM width � � Recent limits on Higgs width � - Global fits to Higgs data Belanger et. al., 1306.2941 [hep-ph] � Γ h → ¯ @ 95% confidence χχ ≤ 0 . 19(0 . 38) B inv ≡ Γ SM + Γ h → ¯ χχ � for fit with SM couplings fixed (floating). � - CMS analysis of on-shell vs. o ff -shell Higgs CMS-PAS-HIG-14-002 and production and decay Caola and Melnikov, h → ZZ → llll, ll νν 1307.4935 [hep-ph] � @ 95% confidence. Γ h, tot ≤ 17 . 4MeV 15

  16. Resulting limits on the DM mass � � � Invisible BR Invisible BR Direct limit [Belanger, et al.] [Belanger, et al.] [CMS] � � � � M & GeV � Couplings fixed Couplings floating — � to SM � 56.8 56.2 55.7 Dirac � � 55.3 54.6 53.8 Majorana � � � (Practically independent of S/PS nature: larger for Λ PS, but less phase-space suppression) 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend