exotic topological states of ultra cold atomic matter
play

Exotic topological states of ultra-cold atomic matter Lecture 1: - PowerPoint PPT Presentation

Exotic topological states of ultra-cold atomic matter Lecture 1: Topolgical and non- topological solitons Joachim Brand Canberra International Physics Summer School: 2018 Topological Matter To be covered: Solitons in quantum gases Lecture


  1. Exotic topological states of ultra-cold atomic matter Lecture 1: Topolgical and non- topological solitons Joachim Brand Canberra International Physics Summer School: 2018 – Topological Matter

  2. To be covered: Solitons in quantum gases Lecture 1: Solitons and topological solitons • – solitons in water: the KdV equa;on, iintegrability – solitons of the nonlinear Schrodinger equa;on – solitons of the sine Gordon equa;on - topological solitons – Bose Josephson vor;ces in linearly coupled BECs Lecture 2: Semitopological solitons in mul;ple dimension • – Solitons as quasipar;cles: effec;ve mass – solitons in the strongly-interac;ng Fermi gas – snaking instability – vortex rings – solitonic vor;ces Lecture 3: Quantum solitons and Majorana solitons • – solitons in strongly-correlated 1D quantum gas – solitons with Majorana quasipar;cles in fermionic superfluids

  3. Solitons Water Optics Coupled Pedula Tikhonenko et al. (1996) Sengstock group (2008) 5 BEC credit: Alex Kasman

  4. Topologial solitons So if a soliton is a localised wave, then what is a topological soliton?

  5. Hagfish makes a knot Credit: Stefan Siebert, Sophia Tintory, Casey Dunn hRps://vimeo.com/7825337

  6. Topologial solitons So if a soliton is a localised wave, then what is a topological soliton? Wikipedia: “A topological soliton or a topological defect is a solu;on of a system of par;al differen;al equa;ons or of a quantum field theory homotopically dis;nct from the vacuum solu;on.” Homotopy: a con;nuous deforma;on

  7. � � � � � � � ������ Solitons appear spontaneously e.g. when cooling through the Bose-Einstein condensa;on phase transi;on • Nature Physics 2013: ARTICLES PUBLISHED ONLINE: 8 SEPTEMBER 2013 | DOI: 10.1038/NPHYS2734 Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo and Gabriele Ferrari * Also: proposal to observe Josephson vor;ces (topological solitons) by rapidly cooling a double-ring Bose- J Einstein condensate. �� � � � � � � SW Su, SC Gou, AS Bradley, O Fialko, JB , Phys. Rev. LeR. 110 , 215302 (2013)

  8. From linear to nonlinear waves: shallow water Linear wave equa;on φ ( x, t ) = A sin( x − ct ) ∂ t φ + c ∂ x φ = 0 Nonlinear waves: wave speed depends on amplitude: Inviscid Burgers equa;on ∂ t φ + φ ∂ x φ = 0 Add dispersive (higher order deriva;ve term): Source: Leon van Dommelen, FSU Korteweg – de Vries equa;on (1895) ∂ t φ + ∂ 3 x φ + 6 φ ∂ x φ = 0 Soliton solu;on  √ c � φ ( x, t ) = 1 2 c sech 2 2 ( x − ct − a ) Source: Wikipedia

  9. KdV: an integrable soliton equa;on 1965: Zabusky and Kruskal discover robust collision in numerics, invent the term “soliton” 1967: Inverse scaRering transform (Gardner, Greene, Kruskal, Miura) is based on the existence of a Lax pair L = − ∂ 2 x + φ A = 4 ∂ 3 x − 3[2 φ∂ x + ( ∂ x φ )] ∂ t L = [ L, A ] scaRering data Ini;al condi;on L φ ( x, 0) S ( t = 0) A inverse scaRering φ ( x, t ) S ( t ) Inverse scaRering transform method

  10. The scaRering problem The linear Schrödinger equa;on L = − ∂ 2 with L ψ ( x ) = λψ ( x ) x + φ has bound state solu;ons “solitons” λ i < 0 and scaRering states “radia;on” λ ≥ 0 The nature of the scaRering problem does not change as ;me evolves, thus solitons are eternal. Moreover, there is an infinite number of constants of the mo;on – the problem is integrable . Long term fate of a localised ini;al state (finite support) φ ( x, 0) For with φ ( x, t ) t → ∞ • Solitons will persist, separate • Radia;on will decay to zero amplitude

  11. Examples of integrable soliton equa;ons Korteweg – de Vries equa=on : • ∂ t φ + ∂ 3 x φ + 6 φ ∂ x φ = 0 real wave func;on, bright solitons only Nonlinear Schrödinger equa=on: • i ∂ t u = − ∂ 2 x u ± | u | 2 u complex wave func;on, bright and dark solitons Sine Gordon equa=on: • ∂ 2 t φ − ∂ 2 x φ + sin( φ ) = 0 rela;vis;c covariant wave equa;on (Lorentz transforma;on); real wave func;on, topological solitons

  12. Theory: Bose-Einstein Condensate (BEC) • Bose gas in an external poten;al For BECs we may use the classical Interaction becomes a or mean field (Hartree) approximation: tunable parameter Gross-Pitaevskii equation s-wave scattering length The GP equation is a nonlinear Schrödinger equation Is GP valid for soliton phenomena? Criterium of validity: healing length particle distance length scale for solitons

  13. Solitons as sta;onary solu;ons of the nonlinear Schrödinger equa;on cos(x) sin(x) g=0 g=0 cn(x|k) sn(x|k) g<0 g>0 bright soliton dark soliton tanh(x) sech(x) For a tutorial-style introduc;on see Reinhardt 1988

  14. Solitons in the nonlinear Schrödinger equation (NLS) Dispersion Nonlinearity bright dark solitons soliton u ( x, t ) = u 0 { Ai + B tanh[ u 0 B ( x − Au 0 t )] } e iu 2 0 t A 2 + B 2 = 1 Phase step ✓ A ◆ ∆ φ = 2 tan − 1 B From: Kivshar (1998)

  15. Solitons in quantum gases • Bose-Einstein condensate in quasi-1D trap: Gross-Pitaevskii equa;on -> NLS – Dark solitons with repulsive interac;ons – Bright solitons with aRrac;ve interac;ons • Superfluid Fermi gas in BEC – BCS crossover – BEC regime -> dark solitons as above (NLS) in quasi 1D – BCS regime -> Bogoliubov-de Gennes equa;on with dark soliton solu;ons in 1D – Unitary regime, 3D, strictly 1D -> to be discussed • Linearly coupled 1D BECs -> coupled 1D GPEs – Not integrable but features both NLS and sine Gordon soli;ons

  16. Josephson vor;ces in superconductor Long Josephson juc;on

  17. Solitons of the sine Gordon equa;on The sine Gordon equa;on ) 2 − cos( φ ) Field poten;al ∂ 2 t φ − ∂ 2 x φ + sin( φ ) = 0 0 2π corresponds to the energy density φ w = 1 2( ∂ x φ ) 2 − cos( φ ) vaccum 1 vaccum 2 The sine Gordon kink is a topological soliton. It connects two vacuua.

  18. Classifica;on of solitons • Non-topological soliton: relies on the balance of nonlinearity and dispersion • Topological soliton: owes its existence to a mul;plicity of ground states that allow topologically non-trivial field configura;ons Topological charge for sine-Gordon : Q = 1 2 π [ φ ( x = ∞ ) − φ ( x = −∞ )] Associated conserved current: Z ∞ ∂φ j = 1 Q = j dx 2 π ∂ x −∞

  19. � � � � � ������ � � Two coupled Bose fields i ~ ∂ t ψ 1 = − ~ 2 2 m ∂ xx ψ 1 − µ ψ 1 + g | ψ 1 | 2 ψ 1 − J ψ 2 i ~ ∂ t ψ 2 = − ~ 2 2 m ∂ xx ψ 2 − µ ψ 2 + g | ψ 2 | 2 ψ 2 − J ψ 1 J is tunnel coupling µ is the chemical potential g>0 interaction between atoms J �� � � � � � � ν = J Important parameter: µ Could be realised in double ring trap or two linear traps with narrow barrier (Schmiedmayer experiments).

  20. Field potential for coupled BECs Field potential for coupled BEC fields • Relative phase and amplitude yield sine-Gordon equation – a relativistic field theory! • Total phase and density yield nonlinear Schrödinger equation – with dark solitons and phonons. B Opanchuk, R Polkinghorne, O Fialko, JB, P Drummond, Ann Phys. (Berlin) (2013)

  21. Josephson vortex and dark soliton i ~ ∂ t ψ 1 = − ~ 2 2 m ∂ xx ψ 1 − µ ψ 1 + g | ψ 1 | 2 ψ 1 − J ψ 2 i ~ ∂ t ψ 2 = − ~ 2 2 m ∂ xx ψ 2 − µ ψ 2 + g | ψ 2 | 2 ψ 2 − J ψ 1 Josephson vortex Dark soliton arg ψ 1 − arg ψ 2 arg ψ 1 arg ψ 2 The stationary solutions were found by Kaurov and Kuklov PRA (2005) Related: JB,T Haigh, U Zuelicke PRA 2009 L Wen, H Xiong, B Wu PRA 2010

  22. Josephson vortex vs dark soliton Dark soliton (unstable) Energy Josephson vortex (stable) ν = J coupling parameter µ

  23. Josephson vortex dispersion Josephson vortices can move dark soliton v = dE dP c 1 = 2 dE dP 2 m eff c Josephson vortex They are quasiparticles with tunable effective mass Sophie Shamailov and JB, arXiv:1709.00403

  24. Breathers and oscillons • Breathers in the sine Gordon equation are not topological, but live forever Small-amplitude breather Stationary large-amplitude breather • In the coupled BECs, instead we find oscillons : breather-like excitations that live a long time 1.5 4 600 1.4 3 1.3 energy 400 t 2 1.2 1.1 200 1 1 0 0 500 1000 − 100 0 100 z t S-W Su, S-C Gou, I-K Liu, AS Bradley, O Fialko, JB, PRA (2015)

  25. Examples of integrable soliton equa;ons Korteweg – de Vries equa=on : water waves • ∂ t φ + ∂ 3 x φ + 6 φ ∂ x φ = 0 Focusing nonlinear Schrödinger equa=on: • i ∂ t u = − ∂ 2 x u − | u | 2 u ARrac;ve Bose-Einstein condensates in quasi-1D waveguide Experiments by Hulet, Salomon, Cornish, Kasevich Defocusing nonlinear Schrödinger equa=on: • i ∂ t u = − ∂ 2 x u + | u | 2 u Repulsively interac;ng Bose-Einstein condensates Experiments by Sengstock, Phillips, Oberthaler Sine Gordon equa=on: • ∂ 2 t φ − ∂ 2 x φ + sin( φ ) = 0 Realised by linearly coupled Bose-Einstein condensates (Schmiedmayer experiments?)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend