flavored mass terms for naive and staggered fermions
play

Flavored-mass terms for naive and staggered fermions Tatsuhiro - PowerPoint PPT Presentation

Flavored-mass terms for naive and staggered fermions Tatsuhiro MISUMI YITP/BNL M. Creutz, T. Kimura, T. Misumi, JHEP 1012 :041 (2010) M. Creutz, T. Kimura, T. Misumi, PRD 83 :094506 (2011) T. Kimura, S. Komatsu, T. Misumi, T. Noumi, S. Torii, S.


  1. Flavored-mass terms for naive and staggered fermions Tatsuhiro MISUMI YITP/BNL M. Creutz, T. Kimura, T. Misumi, JHEP 1012 :041 (2010) M. Creutz, T. Kimura, T. Misumi, PRD 83 :094506 (2011) T. Kimura, S. Komatsu, T. Misumi, T. Noumi, S. Torii, S. Aoki, JHEP 1201 :048 (2012) T. Misumi, Ph.D Thesis , Kyoto University (2012) 02/09/2012 NTFL workshop@Yukawa Institute, Kyoto

  2. Introduction ◆ Wilson fermion ( ψ n +ˆ µ − 2 ψ n + ψ n − ˆ µ ) S W = − ar � a 4 ¯ � ~ d 4 x ¯ S = S nf + S W with ψ ( x ) D 2 ψ n µ ψ ( x ) a 2 a 2 n,µ D naive D wilson Im ! Im ! as m = 0, 16 1 4 6 4 1 Re ! ! Re ! § 15 species are decoupled → doubler-less § additive mass renormalization → Fine-tune for chiral limit Overlap & Domain-wall fermion H W ( m ) D W ( m ) D ov 15 D ov = 1 + γ 5 = 1 + 1 � � H 2 W ( m ) D † W ( m ) D W ( m ) Ginsparg-Wilson : { γ 5 , D ov } = aD ov γ 5 D ov ,

  3. ◆ Staggered fermion ¯ ψ n = γ n 1 1 γ n 2 2 γ n 3 3 γ n 4 χ n γ n 4 4 γ n 3 3 γ n 2 2 γ n 1 Spin diagonalization : ψ n = ¯ 4 χ n , 1 S nf = 4 S st = 4[1 µ ) + m � � P η µ ( n )¯ χ n ( χ n +ˆ χ n χ n ] ¯ ν <µ n ν µ − χ n − ˆ η µ ( n ) = ( − 1) 2 2 n,µ n One naive fermion → 4 Staggered fermions Properties ・ 4-flavor Dirac fermions " # !" " #$%$& ・ Flavored chiral symmetry &' ' � n = ( − 1) n 1 + n 2 + n 3 + n 4 ! !"$ ! !"#"$ ~ as Γ 55 = γ 5 ⊗ γ 5 . " #$% " # spin flavor ! ! ! !"# § chiral symmetry + one-component → suitable for calculations § 4 species → more than 3.....

  4. Naive Wilson Overlap Chiral broken GW symmetry Wilson term Overlap form. #=16 #=1 #=1 Fine tuning Numerical expense 4 copies Staggered #=4 4 tastes

  5. Naive Wilson Overlap Chiral broken GW symmetry Wilson term Overlap form. #=16 #=1 #=1 Fine tuning Numerical expense Flavored-mass 4 copies Generalization term Staggered #=4 4 tastes

  6. Flavored mass terms ~ Generalized Wilson terms ~ � � � D nf e.g.) 2-split flavored mass (8,8) 4 2 � � M P = C µ , 1.5 1 µ =1 sym. 0.5 Naive Im [ λ ] 0 -0.5 -1 -1.5 -2 -1 -0.5 0 0.5 1 Re [ λ ] Creutz, Kimura, TM, JHEP1012,041 [1011.0761] 4 copies D st × → (2,2) 4 2 2 � � M A = ζ 5 C µ 1.5 Staggered µ =1 sym. 1 1 0.5 0 Golterman, Smit (1984) 0 -0.5 -1 -1 Adams, PRL104, 141602 [0912.2850] -1.5 -2 -2 -1 0 1 -0.5 0.5 de Forcrand, Kurkela, Panero, [1102.1000] -1 -0.5 0 0.5 1

  7. Generalized Wilson&overlap Naive Wilson Overlap Chiral broken GW symmetry Wilson term Overlap form. #=16 #=1 #=1 Fine tuning Numerical expense Flavored-mass 4 copies Generalization term Staggered ??? #=4 4 tastes

  8. Generalized Wilson&overlap Naive Wilson Overlap Chiral broken GW symmetry Wilson term Overlap form. #=16 #=1 #=1 Fine tuning Numerical expense Flavored-mass 4 copies Generalization term St.Wilson St.Overlap Staggered #=1 #=4 #=1 4 tastes Faster Wilson & Overlap

  9. 1. Flavored-mass terms ~ general terms to lift degenerate species ~  Naïve fermion M. Creutz, T. Kimura, TM, JHEP 1012:041 (2010) ・ 16 species ( i ) γ µ Γ ( i ) = γ ( i ) as Γ − 1 label position χ charge type Γ µ 1 (0 , 0 , 0 , 0) + S 1 2 ( π , 0 , 0 , 0) A i γ 1 γ 5 − 3 (0 , π , 0 , 0) A i γ 2 γ 5 − 4 ( π , π , 0 , 0) + T i γ 1 γ 2 5 (0 , 0 , π , 0) A i γ 3 γ 5 ・ 16-flavor multiplet − 6 ( π , 0 , π , 0) + T i γ 1 γ 3   7 (0 , π , π , 0) + T i γ 2 γ 3 ψ (1) ( p − p (1) )   8 ( π , π , π , 0) V γ 4 − ψ (2) ( p − p (2) )     Ψ ( p ) = .   9 (0 , 0 , 0 , π ) A i γ 4 γ 5 . − .     10 ( π , 0 , 0 , π ) + T i γ 1 γ 4   ψ (16) ( p − p (16) ) 11 (0 , π , 0 , π ) + T i γ 2 γ 4 12 ( π , π , 0 , π ) V γ 3 − Flavor mass matrix 13 (0 , 0 , π , π ) + T i γ 3 γ 4 14 ( π , 0 , π , π ) V γ 2 − ¯ Ψ ( 1 ⊗ X ) Ψ 15 (0 , π , π , π ) V γ 1 − Mass matrix 16 ( π , π , π , π ) + P γ 5

  10. ◆ Point-split fields M. Creutz (2010), for minimally doubled fermions. 1 ψ (1) ( p − p (1) ) = 2 4 (1 + cos p 1 )(1 + cos p 2 )(1 + cos p 3 )(1 + cos p 4 ) Γ (1) ψ ( p ) , 1 ψ (2) ( p − p (2) ) = 2 4 (1 − cos p 1 )(1 + cos p 2 )(1 + cos p 3 )(1 + cos p 4 ) Γ (2) ψ ( p ) , 1 ψ (3) ( p − p (3) ) = 2 4 (1 + cos p 1 )(1 − cos p 2 )(1 + cos p 3 )(1 + cos p 4 ) Γ (3) ψ ( p ) , . . . 1 ψ (16) ( p − p (16) ) = 2 4 (1 − cos p 1 )(1 − cos p 2 )(1 − cos p 3 )(1 − cos p 4 ) Γ (16) ψ ( p ) , → Independent fields in low energy limit   ψ (1) ( p − p (1) )   ψ (2) ( p − p (2) )   ¯ Ψ ( 1 ⊗ X ) Ψ   Ψ ( p ) = .   . .   Mass matrix     ψ (16) ( p − p (16) ) 16-flavor multiplet

  11. ・ Conditions on flavored-mass terms (1) gamma-5 hermiticity : D † = γ 5 D γ 5 det( D ) ≥ 0 essential for euclidian vector-like theory   ψ (1) ( p − p (1) )   ψ (2) ( p − p (2) )   ※ to γ 5 ⊗ ( τ 3 ⊗ τ 3 ⊗ τ 3 ⊗ τ 3 ) for   Ψ ( p ) = .   . spin flavor .       ψ (16) ( p − p (16) ) (2) O( a ) irrelevant term � ~ d 4 x ¯ ψ ( x ) D 2 µ ψ ( x ) a dim-5 operator vanishes in a → 0 ・ Physical modes in the continuum limit ・ Rotational symmetry

  12. ◆ Flavored-mass terms ¯ cos p 1 ¯ V : Ψ ( 1 ⊗ ( τ 3 ⊗ 1 ⊗ 1 ⊗ 1 )) Ψ = � ψψ M V = C µ , µ ¯ cos p 1 cos p 2 ¯ T : Ψ ( 1 ⊗ ( τ 3 ⊗ τ 3 ⊗ 1 ⊗ 1 )) Ψ = ψψ � � M T = C µ C ν , � 4 perm. sym. � ¯ � ¯ A : Ψ ( 1 ⊗ ( 1 ⊗ τ 3 ⊗ τ 3 ⊗ τ 3 )) Ψ = cos p µ ψψ � � � M A = C ν , µ =2 perm. sym. ν � 4 � 4 ¯ � ¯ P : Ψ ( 1 ⊗ ( τ 3 ⊗ τ 3 ⊗ τ 3 ⊗ τ 3 )) Ψ = cos p µ ψψ � � M P = C µ , µ =1 µ =1 sym. � ・ O( a ) irrelevant terms ¯ d 4 x ¯ � ψ ( x ) D 2 µ ψ ( x ) + O ( a 2 ) ψ n ( M P − 1) ψ n → − a n ・ low-energy species-splitting terms Im ! ・ M V ( M A ) → Wilson term ! Re !

  13. : : Dirac spectra with flavored mass terms (8,8) (4,8,4) D nf − M ( i ) D nf − M P T (1,15) M V +M A : (1,14,1) M P +M T : (4,12) M P +M V : (5,1,10) M T +M V : (10,5,1) M A +M V +M T1+ M T2 : (3,12,1) D nf − ( M V + M T + M A + M P ) → Multi-flavor Wilson & Overlap (although we need care about renormalization)

  14. ◆ Pseudo-scalar type (8,8) � M P = C 1 C 2 C 3 C 4 sym. consistent ¯ P : Ψ ( 1 ⊗ ( τ 3 ⊗ τ 3 ⊗ τ 3 ⊗ τ 3 )) Ψ 8 (+) and 8 (-) masses D nf − M P ・ Index theorem from spectral flow cf.) For staggered, Adams (2009) H = γ 5 ( D nf − rM P ) 36 × 36 lattice, randomness δ =0.25, Q=1 λ ( r ) Index( D nf ) = - Spectral flow( H ) doubled Index( D nf ) = 2 d ( − 1) d/ 2 Q Index( D gw ) = -4 λ ( r )

  15. Adams-type flavored mass D. Adams (2009) ・ spin diagonalization ¯ χ x γ x 4 4 γ x 3 3 γ x 2 2 γ x 1 1 γ x 1 +1 γ x 2 +1 γ x 3 +1 γ x 4 +1 4 = ¯ ψ x ψ x +ˆ χ x +ˆ 1+ˆ 2+ˆ 3+ˆ 1+ˆ 2+ˆ 3+ˆ 1 2 3 4 4 = ( − 1) x 2 + x 4 ¯ χ x γ 5 χ x +ˆ ( γ 5 diagonalized) 1+ˆ 2+ˆ 3+ˆ 4 → ± ¯ χ x �η 1 η 2 η 3 η 4 χ x +ˆ 1+ˆ 2+ˆ 3+ˆ 4 4 Adams fermions derived up to sign ¯ ± ¯ χ x ( �η 1 η 2 η 3 η 4 C 1 C 2 C 3 C 4 ) χ x . ψ x C 1 C 2 C 3 C 4 ψ x → (2,2) (8,8) × → 2 1 M P st ( M A ) 0 -1 -2 -1 0 1 -0.5 0.5 de Forcrand, Kurkela, Panero, [1102.1000] S nf ( M P ) S st ( M A ) →

  16. ◆ Tensor type (4,8,4) M T = M (1) T + M (2) T + M (3) T , = 1 2( C 1 C 2 + C 2 C 1 ) + 1 M (1) 2( C 3 C 4 + C 4 C 3 ) , T = 1 2( C 1 C 3 + C 3 C 1 ) + 1 M (2) 2( C 2 C 4 + C 4 C 2 ) , T = 1 2( C 1 C 4 + C 4 C 1 ) + 1 M (3) 2( C 2 C 3 + C 3 C 2 ) . T Double rotation symmetric units : x → R ( µ ν ) R ( ρσ ) x D nf − M ( i ) T ・ Index theorem from spectral flow 36 × 36 lattice, randomness δ =0.25, Q=1 λ ( r ) H = γ 5 ( D nf − rM ( i ) T ) Index( D ) = - Spectral flow( H ) Index( D ) = -2 λ ( r ) Index( D ) = 2 d − 1 ( − 1) d/ 2 Q

  17. Hoelbling-type flavored mass Hoelbling PLB696, 422(2011) [1009.5362]. de Forcrand (2010) ・ spin diagonalization 4 = ( − 1) x 2 ¯ 2 + ( − 1) x 4 ¯ ¯ 2 + ¯ ψ x ψ x +ˆ ψ x ψ x +ˆ χ x γ 1 γ 2 χ x +ˆ χ x γ 3 γ 4 χ x +ˆ 1+ˆ 3+ˆ 1+ˆ 3+ˆ 4 → ± ¯ 2 ± ¯ χ x i � 12 η 1 η 2 χ x +ˆ χ x i � 34 η 3 η 4 χ x +ˆ 1+ˆ 3+ˆ 4 ※ two terms simultaneously diagonalizable : [ σ 12 , σ 34 ] = 0 4 Hoelbling fermions (3 units) up to sign ¯ ψ x [( C 1 C 2 + C 2 C 1 ) + ( C 3 C 4 + C 4 C 3 )] ψ x ± ¯ χ x [ i � 12 η 1 η 2 ( C 1 C 2 + C 2 C 1 ) ± i � 34 η 3 η 4 ( C 3 C 4 + C 4 C 3 )] χ x → (4,8,4) (1,2,1) 2 for the d 1 − M ( i ) M ( i ) 0 T H -1 -2 1 4 0 2 3 4 Hoelbling, PLB696, 422(2011) [1009.5362]. S nf ( M ( i ) S st ( M ( i ) T ) H ) →

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend