lattice calculation of bsm b parameters using improved
play

Lattice calculation of BSM B-parameters using improved staggered - PowerPoint PPT Presentation

Lattice calculation of BSM B-parameters using improved staggered fermions in N f = 2 + 1 unquenched QCD Boram Yoon Los Alamos National Laboratory Oct 1, 2013 1 / 49 Let me introduce my self Boram Yoon Profile Ph. D. in Physics


  1. Lattice calculation of BSM B-parameters using improved staggered fermions in N f = 2 + 1 unquenched QCD Boram Yoon Los Alamos National Laboratory Oct 1, 2013 1 / 49

  2. Let me introduce my self • Boram Yoon • Profile – Ph. D. in Physics (Feb, 2013) Seoul National University, Korea (Adv: Prof. Weonjong Lee) – Los Alamos National Lab (Aug, 2013) • Research Interests – Lattice Gauge Theory (QCD) – Chiral Perturbation Theory – Data Analysis – High Performance Computing • Projects in LANL – Neutron Electric Dipole Moments (nEDM) – Illuminating the Origin of the Nucleon Spin 2 / 49

  3. Lattice calculation of BSM B-parameters using improved staggered fermions in N f = 2 + 1 unquenched QCD Boram Yoon Los Alamos National Laboratory Oct 1, 2013 3 / 49

  4. Collaboration • Seoul National University – Yong-Chull Jang, Hwancheol Jeong, Jangho Kim, Jongjeong Kim, Kwangwoo Kim, Seonghee Kim, Weonjong Lee, Jaehoon Leem, Boram Yoon • University of Washington – Stephen R. Sharpe • Brookhaven National Laboratory – Hyung-Jin Kim, Chulwoo Jung • Korea Institute of Science and Technology Information – Taegil Bae 4 / 49

  5. Beyond the Standard Model B-parameters Motivation & Background 5 / 49

  6. Neutral Kaon System • Flavor eigenstates 0 = ( sd ) K 0 = ( sd ) , K • CP eigenstates 1 2( K 0 ± K 0 ) , √ K ± = CP | K ± � = ±| K ± � • Mass eigenstate K S = K + + ǫK − K L = K − + ǫK + 10 − 3 � � 1 + | ǫ | 2 , 1 + | ǫ | 2 , | ǫ | ≈ O � � • Preferable decays into pion states K S → 2 π ( via K + , CP even ) K L → 3 π ( via K − , CP odd ) 6 / 49

  7. Direct / Indirect CP Violation • CP violating K L → ππ can occur in two ways: • K − (CP odd) → ππ (CP even) : Direct CPV � A [ K L → ( ππ ) 2 ] � 1 A [ K L → ( ππ ) 2 ] ε ′ K = √ A [ K S → ( ππ ) 2 ] − ε K A [ K S → ( ππ ) 0 ] 2 • ǫK + (CP even) → ππ (CP even) : Indirect CPV 1 � A [ K L → ( ππ ) 0 ] � ε K = √ A [ K S → ( ππ ) 0 ] 2 0 mixing K L can have small CP even component via K 0 − K 7 / 49

  8. 0 Mixing in the Standard Model K 0 − K • Arises from the ∆ S = 2 , sd → sd FCNC • Responsible for indirect CPV and ∆ M K ≡ M K L − M K S • Dominated by the following box diagrams: 8 / 49

  9. 0 Mixing in the Standard Model K 0 − K • Integrating out heavy particles, the box diagram can be replaced by a local, four-quark operator = G 2 F M 2 H ∆ S =2 16 π 2 F 0 Q 1 + h.c. W eff Q 1 = [¯ sγ µ (1 − γ 5 ) d ][¯ sγ µ (1 − γ 5 ) d ] 9 / 49

  10. Kaon Bag Parameter – B K • In the SM, indirect CPV can be predicted as follows ε K ∼ known factors × V CKM × ˆ B K • ˆ B K is the RG invariant form of B K 0 | [¯ sγ µ (1 − γ 5 ) d ] | K 0 � B K = � K sγ µ (1 − γ 5 ) d ][¯ 0 | sγ µ γ 5 d | 0 �� 0 | sγ µ γ 5 d | K 0 � 8 3 � K • B K contains all the non-perturbative QCD contribution for ε K , can be calculated from lattice simulations 10 / 49

  11. Experiment vs SM prediction of ε K • There are two methods (exclusive, inclusive) to determine V cb , whose results are somewhat different • SM prediction of ε K deviates from the experimental value about 3 σ for exclusive V cb channel (Y. Jang & W. Lee, 2012) 11 / 49

  12. 0 Mixing BSM Contribution to K 0 − K • In the Standard Model, only the “left–left” form contributes to the 0 mixing box diagram K 0 − K 0 | [¯ sγ µ (1 − γ 5 ) d ] | K 0 � � K sγ µ (1 − γ 5 ) d ][¯ • Considering BSM physics, integrating out heavy particles (e.g. squarks and gluinos in supersymmetric models) leads to new operators with Dirac structures other than “left–left” h, k, l, m ∈ { L, R } 12 / 49

  13. BSM Operators • Considering BSM, generic effective Hamiltonian is s a γ µ (1 − γ 5 ) d a ][¯ s b γ µ (1 − γ 5 ) d b ] Q 1 = [¯ s a (1 − γ 5 ) d a ][¯ s b (1 − γ 5 ) d b ] Q 2 = [¯ 5 � H ∆ S =2 s a σ µν (1 − γ 5 ) d a ][¯ s b σ µν (1 − γ 5 ) d b ] = C i Q i Q 3 = [¯ eff i =1 s a (1 − γ 5 ) d a ][¯ s b (1 + γ 5 ) d b ] Q 4 = [¯ s a γ µ (1 − γ 5 ) d a ][¯ s b γ µ (1 + γ 5 ) d b ] Q 5 = [¯ • Once a BSM physics is chosen, C i are determined 0 | Q i | K 0 � , • If we know � K we can calculate ε K estimated by the BSM physics • Comparing with experiments, we can give constraints on the BSM physics 13 / 49

  14. BSM B-parameters • BSM B-parameters � ¯ K 0 | Q i | K 0 � B i = N i � ¯ K 0 | ¯ sγ 5 d | 0 �� 0 | ¯ sγ 5 d | K 0 � s a (1 − γ 5 ) d a ][¯ s b (1 − γ 5 ) d b ] Q 2 = [¯ s a σ µν (1 − γ 5 ) d a ][¯ s b σ µν (1 − γ 5 ) d b ] Q 3 = [¯ s a (1 − γ 5 ) d a ][¯ s b (1 + γ 5 ) d b ] Q 4 = [¯ s a γ µ (1 − γ 5 ) d a ][¯ s b γ µ (1 + γ 5 ) d b ] Q 5 = [¯ ( N 2 , N 3 , N 4 , N 5 ) = (5 / 3 , 4 , − 2 , 4 / 3) • In the lattice calculation, forming dimensionless ratio reduces statistical and systematic error • Chiral perturbation expression is simpler 14 / 49

  15. Lattice QCD 15 / 49

  16. Lattice QCD • Non-perturbative approach to understand QCD • Formulated on discretized Euclidean space-time – Hypercubic lattice – Lattice spacing “ a ” – Quark fields placed on sites – Gauge fields on the links between sites; U µ 16 / 49

  17. Lattice QCD • Expectation value �O ( U, q, ¯ q ) � � � = 1 � � � q ) e − S g [ U ] − � f ¯ q f D [ U ]+ m f q f D ¯ q D q D U O ( U, q, ¯ Z   = 1 �  O ( U, ( D [ U ] + m f ) − 1 ) e − S g [ U ] � � � D U det D [ U ] + m f  Z f • Integrating over the q and ¯ q gives � � determinant of Dirac operator, det D [ U ] + m f and quark propagators, ( D [ U ] + m f ) − 1 17 / 49

  18. Lattice QCD • Expectation value �O ( U, q, ¯ q ) �   = 1 �  O ( U, ( D [ U ] + m f ) − 1 ) e − S g [ U ] � � � D U det D [ U ] + m f  Z f • Numerical Integration By generating random samples of gauge links, U µ according to the probability distribution, one can perform the integration using the Monte Carlo method dx f ( x ) p X ( x ) ≃ 1 � � � f ( X ) � = f ( x i ) N i where x i are random samples of X 18 / 49

  19. Lattice QCD • Use numerical method (Monte Carlo simulation) to calculate integral �O� = 1 � q D q D U O e − S D ¯ Z • “ Lattice action ” is needed to simulate in discretized space-time S [ U, ¯ q, q ] = S G [ U ] + S F [ U, ¯ q, q ] • In this work, we use “ Staggered fermion ” for the lattice fermion – The fastest lattice fermion action – Suffered from “ taste symmetry breaking ”, but manageable 19 / 49

  20. Beyond the Standard Model B-parameters Lattice Calculation of B-parameters & Data Analysis 20 / 49

  21. Physical Results from Unphysical Simulations • Chiral Extrapolation – In the lattice simulation, the smaller quark mass requires the exponentially larger computational cost ⇒ Use light quark masses larger than physical light quark mass, and extrapolate to the physical light quark mass using chiral perturbation theory – Tuning the strange quark mass to precise physical quark mass is not practical ⇒ Extrapolate to the physical strange quark mass • Continuum Extrapolation – Simulation is done with finite lattice spacing ( a � 0 . 045 fm) ⇒ Extrapolate to continuum limit, a = 0 21 / 49

  22. Data Analysis Strategy 1. Calculate raw data Calculate BSM B-parameters for different quark mass combinations ( m x , m y ) 2. Chiral fitting X-fit: Fix strange quark mass, extrapolate m x → m phys d Y-fit: Extrapolate m y → m phys s 3. RG Evolution Obatin results at 2 GeV and 3 GeV from µ = 1 /a 4. Continuum extrapolation Repeat [1–3] for different lattices and extrapolate to a = 0 22 / 49

  23. Analysis Data Lattices generated with the N f = 2 + 1 improved “asqtad” staggered action by the MILC collaboration a (fm) am l /am s size 1 /a (GeV) ens × meas ID 28 3 × 96 0 . 09 0 . 0062 / 0 . 031 2 . 3 995 × 9 F1 28 3 × 96 0 . 09 0 . 0093 / 0 . 031 2 . 3 949 × 9 F2 40 3 × 96 0 . 09 0 . 0031 / 0 . 031 2 . 3 959 × 9 F3 28 3 × 96 0 . 09 0 . 0124 / 0 . 031 2 . 3 1995 × 9 F4 32 3 × 96 0 . 09 0 . 00465 / 0 . 031 2 . 3 651 × 9 F5 48 3 × 144 0 . 06 0 . 0036 / 0 . 018 3 . 4 749 × 9 S1 48 3 × 144 0 . 06 0 . 0072 / 0 . 018 3 . 4 593 × 9 S2 56 3 × 144 0 . 06 0 . 0025 / 0 . 018 3 . 4 799 × 9 S3 48 3 × 144 0 . 06 0 . 0054 / 0 . 018 3 . 4 582 × 9 S4 64 3 × 192 0 . 045 0 . 0028 / 0 . 014 4 . 5 747 × 1 U1 23 / 49

  24. Operator Matching • To find continuum (NDR with MS) results from those regularized on the lattice, “operator matching” is needed • We use one-loop matching factors (J. Kim, W. Lee and S. Sharpe, 2011) • Matching scale µ = 1 /a g 2 � � O Cont z ij O Lat d Lat ik O Lat = − i j k (4 π ) 2 j ∈ ( A ) k ∈ ( B ) g 2 � � − γ ij log( µa ) + d Cont − d Lat z ij = b ij + ij − C F I MF T ij ij (4 π ) 2 24 / 49

  25. Calculation of BSM B-parameters � ¯ K 0 | Q i | K 0 � � W ( t 1 ) Q i ( t ) W ( t 2 ) � B i = → N i � ¯ N ′ i � W ( t 1 ) P ( t ) � � P ( t ) W ( t 2 ) � K 0 | ¯ sγ 5 d | 0 �� 0 | ¯ sγ 5 d | K 0 � • B 2 calculated on F1 ( a = 0 . 09 fm) • Valence quark : m x = 1 10 m s m y = m s 25 / 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend