the classical integrable structure of ads cft
play

The classical integrable structure of AdS/CFT Beno t Vicedo DESY, - PowerPoint PPT Presentation

Motivation Constrained IS GS superstring Lie dialgebra Conclusions The classical integrable structure of AdS/CFT Beno t Vicedo DESY, Hamburg Cambridge, UK Thursday 24-th February, 2011 Motivation Constrained IS GS superstring Lie


  1. Motivation Constrained IS GS superstring Lie dialgebra Conclusions The classical integrable structure of AdS/CFT Benoˆ ıt Vicedo DESY, Hamburg Cambridge, UK Thursday 24-th February, 2011

  2. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Motivation λ classical AdS strings QISM S -matrix ? TBA perturb. gauge theory L TBA approach: Assumes integrability at finite λ, L . • At L ≫ 1, factorizability of the S -matrix � Fix 2-body S -matrix using Yangian symmetry (universal R -matrix?) • Zamolodchikov’s TBA trick � Ground state energy E 0 ( L ) . Claim: Excited states described by solutions of Y -system (boundary & analyticity conditions?). [Frolov-Arutyunov, Bombardelli-Tateo-Fioravanti, Gromov-Kazakov-Kozak-Vieira ’09] Need to prove integrability ∀ ( λ, L ) � QISM.

  3. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Green-Schwarz superstring on AdS -spaces Described by σ -model on semi-symmetric spaces [Zarembo ’10] Σ ≡ R × S 1 = super ( AdS n × Y 10 − n ) ≡ G / H − → Let g : Σ → G , A = − g − 1 dg ∈ Ω 1 (Σ , g ) , g = Lie G and impose • Global left G -action: under g �→ Ug , U ∈ G , have A �→ A . • Local right H -action: under g �→ gh , h : Σ → H have A �→ h − 1 Ah − h − 1 dh , hence A ( n ) ∈ g n . A ( 1 , 2 , 3 ) �→ h − 1 A ( 1 , 2 , 3 ) h , where Lagrangian: 2 � A ( 2 ) ∧ ∗ A ( 2 ) � 2 � A ( 1 ) ∧ A ( 3 ) � + � Λ , dA − A 2 � L GS := − 1 − 1 . � �� � � �� � � �� � Maurer − Cartan kinetic WZW

  4. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Classical integrability (i) Equations of motion for L GS : Can be neatly written as zero-curvature equation dJ BPR ( z ) − J BPR ( z ) ∧ J BPR ( z ) = 0 , for the following Lax connection [Bena-Polchinski-Roiban ’03] − + z − 1 A ( 3 ) + A ( 0 ) + z A ( 1 ) + z 2 A ( 2 ) J BPR ( z ) := z − 2 A ( 2 ) + where z ∈ C and A ( 2 ) ± := A ( 2 ) ± ∗ A ( 2 ) . Integrals of motion: Ω( z , σ, τ ) := P ← − − � [ γ ( σ,τ )] J BPR ( z ) exp γ ( σ,τ ) ( σ ′ , τ ′ ) Ω( z , σ ′ , τ ′ ) = T ˜ γ ( z ) · Ω( z , σ, τ ) · T ˜ γ ( z ) − 1 , γ ˜ γ ( σ ′ ,τ ′ ) ∂ σ str Ω( z ) m = ∂ τ str Ω( z ) m = 0 . ( σ, τ ) ⇒

  5. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Classical integrability (ii) Involution property: Integrability also requires { str Ω( z ) m , str Ω( z ′ ) n } = 0 , ∀ m , n ∈ N , z , z ′ ∈ C . Writing J BPR ( z ) = L BPR ( z ) d σ + M BPR ( z ) d τ , this would follow provided [Maillet ’85] � ? � L BPR ( z , σ ) ⊗ , L BPR ( z ′ , σ ′ ) = � r ( z , z ′ ) , L BPR ( z , σ ) ⊗ 1 + 1 ⊗ L BPR ( z ′ , σ ′ ) � δ ( σ, σ ′ ) � � s ( z , z ′ ) , L BPR ( z , σ ) ⊗ 1 − 1 ⊗ L BPR ( z ′ , σ ′ ) δ ( σ, σ ′ ) − − 2 s ( z , z ′ ) ∂ σ δ ( σ, σ ′ ) , for some r ( z , z ′ ) , s ( z , z ′ ) taking values in g ⊗ g . Problem: J BPR ( z ) does not have this property! � Rederive Lax connection within Hamiltonian formalism.

  6. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Constrained Hamiltonian systems Legendre transform: Given Lagrangian L ∈ C ( TM ) , define D L : TM → T ∗ M ≡ P , ( q , ˙ q ) �→ ( q , p = ∂ L /∂ ˙ q ) . If D L ( TM ) = Σ ⊂ P then L ∈ C ( TM ) � H = p ˙ q − L ∈ C (Σ) Σ ≡ { φ A ≈ 0 } ⊂ P Constraint surface: φ A = γ a , χ α {· , γ a } γ a : first class , { γ a , φ A } ≈ 0 χ α : second class φ A ≈ 0 d . o . f . = ( 2 n − m − 2 p ) − m � �� � dim Σ

  7. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Extensions Lemma Let F , G ∈ C ( P ) be such that F ≈ G, i.e. F | Σ = G | Σ , then � f A φ A . F = G + A A f A φ A Extension: Given F ∈ C ( P ) , can ‘extend’ F � F + � If F is first class, i.e. { F , φ A } ≈ 0, then F � F + � a f a γ a e.g. : Extended Hamiltonian � � u a γ a u A , B φ A φ B H � H E ≡ H + + . ���� a A , B dyn. � �� � � �� � gauge tr. unphys.

  8. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Symmetry Moment map µ : P → R generates symmetry δ F = { F , µ } . It preserves Σ if δφ A = { φ A , µ } ≈ 0 , ∀ A ( ⋆ ) i.e. provided µ is first class. Can ensure this by µ � µ + � α m α χ α . Remark ( ⋆ ) is preserved by: {· , γ a } � m a γ a µ � µ + a � m A , B φ A φ B {· , µ } + φ A ≈ 0 A , B

  9. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Constrained integrable systems n -dimensional constrained Hamiltonian system ( P , ω, H , φ A ) , has 2 ( n − p − m ) ≡ 2 k indep. phase-space variables. Definition ( P , ω, H , φ A ) is integrable if ∃ µ 1 , . . . , µ k ∈ C ( P ) s.t. { µ i , φ A } ≈ 0 , ∀ i , A ( I ) � � = 0 , ∀ i , j and d µ 1 ∧ . . . ∧ d µ k � = 0 ( II ) µ i , µ j and where H ≈ H ( µ ) , with µ = ( µ 1 , . . . , µ k ) : P → R k . Remark a m i , a γ a + . . . Strong equality forbids extensions µ i � µ i + � � Apply these ideas to the Green-Schwarz superstring

  10. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Lagrangian to Hamiltonian GS superstring Start from the Lagrangian (dynamical variables A 0 , A 1 , Λ , h αβ ) √ − hh αβ str ( A ( 2 ) β ) + ǫ αβ str ( A ( 1 ) α A ( 2 ) α A ( 3 ) L GS = − 1 2 [ β )] + str Λ( ∂ 0 A 1 − ∇ 1 A 0 ) . Dirac’s consistency algorithm: p αβ ≈ 0. Primary constraints: Π 0 ≈ 0 , Π 1 ≈ Λ , Π Λ ≈ 0 , Π 1 − Λ is second class with Π Λ � Dirac bracket. Π 0 ≈ 0 ⇒ C ( 0 ) ≈ C ( 1 ) ≈ C ( 2 ) ≈ C ( 3 ) ≈ 0; Secondary constraints: ˙ and C ( 2 ) second class pair � Eliminate. Π ( 2 ) 0 p αβ ≈ 0 ⇒ T ± ≈ 0 (Virasoro constraints). ˙ C ( 0 , 1 , 3 ) ≈ ˙ T ± ≈ 0 ⇒ no new constraints. � Tertiary constraints: ˙ Partial gauge fixing conditions to eliminate Π ( 0 , 1 , 3 ) , p αβ . 0

  11. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Hamiltonian GS superstring In summary, • Phase-space P parametrised by ( A ( 0 , 1 , 2 , 3 ) , Π ( 0 , 1 , 2 , 3 ) ) with 1 1 { A ( i ) 1 1 ( σ ) , Π ( 4 − i ) ( σ ′ ) } D.B. = C ( i 4 − i ) δ ( σ − σ ′ ) . 1 2 12 • Total set of constraints { Φ A } = { T ± , C ( 0 , 1 , 3 ) } . • First class constraints { Γ a } = {T ± , C ( 0 ) , K ( 1 , 3 ) } , where √ K ( 1 , 3 ) ≡ 2 T ± ≡ T ± ∓ str ( A ( 1 , 3 ) λ [ A ( 2 ) ± , i C ( 1 , 3 ) ] + . C ( 3 , 1 ) ) , 1 • Extended Hamiltonian − str ( k ( 3 ) K ( 1 ) ) − str ( k ( 1 ) K ( 3 ) ) H E = ρ + T + + ρ − T − − str ( µ ( 0 ) C ( 0 ) ) . � �� � � �� � � �� � κ − symmetry coset conformal tr.

  12. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Hamiltonian Lax connection Lax connection: Take a general linear combination L = A ( 0 ) + aA ( 1 ) + bA ( 2 ) + cA ( 3 ) 1 1 1 1 + ρ ( ∇ 1 Π 1 ) ( 0 ) + γ ( ∇ 1 Π 1 ) ( 1 ) + β ( ∇ 1 Π 1 ) ( 2 ) + α ( ∇ 1 Π 1 ) ( 3 ) , where a , b , c , α, β, γ, ρ ∈ C . Fix them by imposing: ( I ) str Ω( L ) j are first class, i.e. { str Ω( L ) j , Φ( σ ) } ≈ 0 , ∀ Φ( σ ) ∈ { T ± , C ( 0 , 1 , 3 ) } . ( II ) L is the σ -component of a strongly flat connection, i.e. { L , P 0 } = ∂ σ M + [ M , L ] , for some M , where P 0 is the energy. � Lax connection is then J ( z ) := L ( z ) d σ + M ( z ) d τ .

  13. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Strong zero curvature equation • σ -translation is unambiguously generated on C ( P ) by P 1 ≡ T + − T − − str ( A ( 1 ) 1 C ( 3 ) ) − str ( A ( 3 ) 1 C ( 1 ) ) − str ( A ( 0 ) 1 C ( 0 ) ) , � in the sense that { F ( σ ) , P 1 } = ∂ σ F ( σ ) with P 1 = d σ ′ P 1 ( σ ′ ) . • Generator of τ -translations is defined only on C (Σ) by P 0 ≡ T + + T − − str ( A ( 1 ) 1 C ( 3 ) ) + str ( A ( 3 ) 1 C ( 1 ) ) − str ( A ( 0 ) ˜ 1 C ( 0 ) ) . We are free to extend this definition as follows P 0 � P 0 ≡ ˜ ˜ P 0 + str ( C ( 1 ) C ( 3 ) ) .

  14. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Fixing parameters Total of six independent constraints on seven parameters { a , b , c , α, β, γ, ρ } . Solution depends on one parameter z ∈ C : ( I ) First class monodromy fixes 4 ( z − 3 + 3 z ) , 2 ( z − 1 − z 3 ) a = 1 α = 1 2 ( z − 2 + z 2 ) , 2 ( z − 2 − z 2 ) b = 1 β = 1 4 ( 3 z − 1 + z 3 ) , 2 ( z − 3 − z ) . c = 1 γ = 1 ( II ) Strong zero-curvature fixes 2 ( 1 − z 4 ) . ρ = 1

  15. Motivation Constrained IS GS superstring Lie dialgebra Conclusions Hamiltonian Lax connection Final result reads [BV ’09] � C ( 0 ) + z − 3 C ( 1 ) + z − 1 C ( 3 ) � L ( z ) = L BPR ( z ) + 1 2 ( 1 − z 4 ) . This is an extension of the BPR Lax connection. Relation to pure spinors: Can also write � L ( z ) = L p . s . ( z ) 2 ( 1 − z 4 ) C ( 0 ) . � ghosts = 0 + 1 � Extension of the (matter part of) the pure spinor connection! In fact C ( 1 , 3 ) have second class parts, so L 0 ( z ) := L p . s . ( z ) | ghosts = 0 is a ‘Dirac’ extension of L BPR ( z ) . � Hint at a deeper connection between GS and PS? ...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend