integrability for the ads 3 cft 2 spectral problem
play

Integrability for the AdS 3 / CFT 2 spectral problem Spectral problem - PowerPoint PPT Presentation

Integrability in AdS 3 / CFT 2 Olof Ohlsson Sax Nov 16, 2015 Based on work done together with A. Babichenko, R. Borsato, A. Dekel, T. Lloyd, A. Sfondrini, B. Stefaski and A. Torrielli AdS 3 / CFT 2 AdS 3 backgrounds preserving 16


  1. Coset sigma models and Green-Schwarz strings Green-Schwarz string Coset sigma model D ( 2, 1; α ) × D ( 2, 1; α ) IIB on AdS 3 × S 3 × S 3 × S 1 ↔ SL ( 2 ) × SU ( 2 ) × SU ( 2 ) × U ( 1 ) PSU ( 1, 1 | 2 ) × PSU ( 1, 1 | 2 ) IIB on AdS 3 × S 3 × T 4 × U ( 1 ) 4 ↔ SL ( 2 ) × SU ( 2 ) Coset backgrounds supported by pure RR flux [Babichenko, Stefański, Zarembo ’09]

  2. Coset sigma models and Green-Schwarz strings Green-Schwarz string Coset sigma model D ( 2, 1; α ) × D ( 2, 1; α ) IIB on AdS 3 × S 3 × S 3 × S 1 ↔ SL ( 2 ) × SU ( 2 ) × SU ( 2 ) × U ( 1 ) PSU ( 1, 1 | 2 ) × PSU ( 1, 1 | 2 ) IIB on AdS 3 × S 3 × T 4 × U ( 1 ) 4 ↔ SL ( 2 ) × SU ( 2 ) Coset backgrounds supported by pure RR flux [Babichenko, Stefański, Zarembo ’09] Include NSNS flux by adding WZ term � � 2 � k Str 3 J 2 ∧ J 2 ∧ J 2 + J 1 ∧ J 3 ∧ J 2 + J 3 ∧ J 1 ∧ J 2 WZ term breaks Z 4 symmetry but a Lax connection can still be constructed [Cagnazzo, Zarembo ’12]

  3. String theory in uniform light-cone gauge

  4. String theory on AdS 3 × S 3 × T 4 × × • Consider strings in AdS 3 × S 3 × T 4 supported by pure RR flux • Fix light-cone gauge • 8 + 8 physical world-sheet excitation • World-sheet integrability: • Dispersion relation for fundamental excitations • Two-particle S matrix • S matrix defined on a non-compact world-sheet

  5. String theory on AdS 3 × S 3 × T 4 × × • Isometries: PSU ( 1, 1 | 2 ) × PSU ( 1, 1 | 2 ) × U ( 1 ) 4 SU ( 2 ) • × SU ( 2 ) ◦ • Bosonic subgroup SO ( 2, 2 ) × SO ( 4 ) × U ( 1 ) 4

  6. String theory on AdS 3 × S 3 × T 4 × × • Isometries in the decompactification limit: PSU ( 1, 1 | 2 ) × PSU ( 1, 1 | 2 ) × U ( 1 ) × SO ( 4 ) SU ( 2 ) • × SU ( 2 ) ◦ • Bosonic subgroup SO ( 2, 2 ) × SO ( 4 ) × U ( 1 ) × SO ( 4 )

  7. Light-cone gauge Equator of S 3 AdS 3 time X + = φ + t = τ Fix light-cone gauge:

  8. Light-cone gauge Equator of S 3 AdS 3 time X + = φ + t = τ Fix light-cone gauge: World-sheet Hamiltonian: H = E − J Angular momentum on S 3 AdS 3 energy

  9. Light-cone gauge X + = φ + t = τ Fix light-cone gauge: World-sheet Hamiltonian: H = E − J BMN-like ground state on AdS 3 × S 3 Not compatible with coset kappa gauge – use GS string

  10. Light-cone gauge X + = φ + t = τ Fix light-cone gauge: World-sheet Hamiltonian: H = E − J BMN-like ground state on AdS 3 × S 3 Not compatible with coset kappa gauge – use GS string Ground state preserves 8 supersymmetries 8+8 fluctuations: m B = 4 × { 0, 1 } m F = 4 × { 0, 1 }

  11. Light-cone gauge X + = φ + t = τ Fix light-cone gauge: World-sheet Hamiltonian: H = E − J BMN-like ground state on AdS 3 × S 3 Not compatible with coset kappa gauge – use GS string Ground state preserves 8 supersymmetries 8+8 fluctuations: m B = 4 × { 0, 1 } m F = 4 × { 0, 1 } Note massless modes

  12. “Off-shell” symmetries • Physical states satisfy level matching: P | p 1 , . . . , p n � = ( p 1 + · · · + p n ) | p 1 , . . . , p n � = 0 • “Off-shell” states have: P | p 1 , . . . , p n � � = 0

  13. “Off-shell” symmetries • Physical states satisfy level matching: P | p 1 , . . . , p n � = ( p 1 + · · · + p n ) | p 1 , . . . , p n � = 0 • “Off-shell” states have: P | p 1 , . . . , p n � � = 0 • Not all isometries are manifest in light-cone gauge • Construct off-shell symmetry algebra A of generators J that 1 Commute with the gauge-fixed Hamiltonian [ H , J ] = 0 2 Act on generic off-shell states • World-sheet supercurrents constructed to quartic order [Borsato, OOS, Sfondrini, Stefański, Torrielli ’14] [Lloyd, OOS, Sfondrini, Stefański ’14] • For on-shell states A ⊂ psu ( 1, 1 | 2 ) 2 × so ( 4 )

  14. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) 8 supercharges

  15. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) The on-shell algebra P = 0 Q L a , Q b = 1 2 δ b Q L a , Q b � � � � � � H + M = 0 L a R a Q a = 1 2 δ a � � � � � � R , Q R b H − M Q L , Q R b = 0 b su ( 2 ) • ⊂ so ( 4 ) indices

  16. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) The off-shell algebra P � = 0 [David, Sahoo ’10] [Borsato, OOS, Sfondrini, Stefański, Torrielli ’13-’14] Q L a , Q b = 1 2 δ b Q L a , Q b = δ b � � � � � � H + M a C L a R a Q a = 1 2 δ a = δ a � � � � � � R , Q R b H − M Q L , Q R b b C b Two additional central charges

  17. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) The off-shell algebra P � = 0 [David, Sahoo ’10] [Borsato, OOS, Sfondrini, Stefański, Torrielli ’13-’14] Q L a , Q b = 1 2 δ b Q L a , Q b = δ b � � � � � � H + M a C L a R a Q a = 1 2 δ a = δ a � � � � � � R , Q R b H − M Q L , Q R b b C b Central charge e i P − 1 C = i � � 2 h ( λ ) Coupling constant √ √ λ h ( λ ) = 2 π + O ( 1 / λ )

  18. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) The off-shell algebra P � = 0 [David, Sahoo ’10] [Borsato, OOS, Sfondrini, Stefański, Torrielli ’13-’14] Q L a , Q b = 1 2 δ b Q L a , Q b = δ b � � � � � � H + M a C L a R a Q a = 1 2 δ a = δ a � � � � � � R , Q R b H − M Q L , Q R b b C b Central charge e i P − 1 C = i � � 2 h ( λ ) Non-trivial coproduct � � � # C ⊗ 1 + # 1 ⊗ C | p 1 p 2 � C | p 1 p 2 � = e i ( p 1 + p 2 ) − 1 ih � � | p 1 p 2 � 2

  19. Light-cone gauge symmetry algebra Light-cone gauge breaks isometries to psu ( 1 | 1 ) 4 c.e. × so ( 4 ) The off-shell algebra P � = 0 [David, Sahoo ’10] [Borsato, OOS, Sfondrini, Stefański, Torrielli ’13-’14] Q L a , Q b = 1 2 δ b Q L a , Q b = δ b � � � � � � H + M a C L a R a Q a = 1 2 δ a = δ a � � � � � � R , Q R b H − M Q L , Q R b b C b Central charge e i P − 1 C = i � � 2 h ( λ ) Non-trivial coproduct � � C ⊗ 1 + e ip 1 1 ⊗ C � | p 1 p 2 � C | p 1 p 2 � = e i ( p 1 + p 2 ) − 1 ih � � | p 1 p 2 � 2

  20. Representations Particles transform in short representations H 2 = M 2 + 4 CC 2 ( e i P − 1 ) gives the dispersion relation Central charge C = ih � m 2 + 4 h 2 sin 2 p E p = 2

  21. Representations Particles transform in short representations H 2 = M 2 + 4 CC 2 ( e i P − 1 ) gives the dispersion relation Central charge C = ih � m 2 + 4 h 2 sin 2 p � sin p � � m → 0 E p = − − − → E p = 2 h � � 2 2 �

  22. Representations Particles transform in short representations H 2 = M 2 + 4 CC 2 ( e i P − 1 ) gives the dispersion relation Central charge C = ih � m 2 + 4 h 2 sin 2 p � sin p � � m → 0 E p = − − − → E p = 2 h � � 2 2 � Two massive + two massless psu ( 1 | 1 ) 4 c.e. multiplets | χ 1 � | χ 2 � | Y L � | Z R � | η L1 � | η L2 � | η R1 � | η R2 � | T 11 � | T 21 � | T 12 � | T 22 � | Z L � | Y R � χ 1 � χ 2 � | ˜ | ˜ m =+ 1 m =− 1 m = 0 m = 0

  23. Representations Particles transform in short representations H 2 = M 2 + 4 CC 2 ( e i P − 1 ) gives the dispersion relation Central charge C = ih � m 2 + 4 h 2 sin 2 p � sin p � � m → 0 E p = − − − → E p = 2 h � � 2 2 � Two massive + two massless psu ( 1 | 1 ) 4 c.e. multiplets | χ 1 � | χ 2 � | Y L � | Z R � | η L1 � | η L2 � | η R1 � | η R2 � | T 11 � | T 21 � | T 12 � | T 22 � | Z L � | Y R � χ 1 � χ 2 � | ˜ | ˜ m =+ 1 m =− 1 Doublet under su ( 2 ) ◦ ⊂ so ( 4 )

  24. Properties of the S matrix ∆ ( J ) S • Symmetry invariance = S ∆ ( J ) S S † S = 1 • Unitarity = S S S • Yang-Baxter equation = S S S S

  25. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct

  26. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦

  27. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦ Scattering of excitations with m = + 1 and m = + 1

  28. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦ Scattering of excitations with m = + 1 and m = − 1

  29. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦ Scattering of excitations with m = + 1 and m = 0

  30. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦ Scattering of excitations with m = 0 and m = 0

  31. The two-particle S matrix Find S matrix by imposing off-shell symmetry [ ∆ ( Q ) , S ] = 0 Non-trivial coproduct Unique matrix for each pair of representations Four undetermined coefficients – “dressing phases” σ 2 σ 2 σ 2 σ 2 ˜ •◦ ◦◦ Phases satisfy crossing equations S matrix exact to all orders in h ( λ )

  32. Massless S matrix • In a relativistic theory scattering of massless modes is problematic v = ∂ E ∂ p = ± 1 • Here there is no Lorentz invariance and the “massless” modes have a non-linear dispersion relation v = ∂ E ∂ p = ± h cos p 2

  33. Massless S matrix • In a relativistic theory scattering of massless modes is problematic v = ∂ E ∂ p = ± 1 • Here there is no Lorentz invariance and the “massless” modes have a non-linear dispersion relation v = ∂ E ∂ p = ± h cos p 2 • Massless modes form doublet under su ( 2 ) ◦ – extra su ( 2 ) S matrix S su ( 2 ) = 1 + i ( w p − w q ) Π Unknown function of momentum

  34. Mixed flux background • AdS 3 × S 3 × T 4 supported by RR+NSNS three-form flux � � � � F = ˜ q Vol AdS 3 + Vol S 3 H = q Vol AdS 3 + Vol S 3 q 2 + q 2 = 1 • Coefficients related by ˜ • Quantised WZW level √ Q NS5 = 2 π/ k = q λ ∈ Z • Dispersion relation � q 2 h 2 sin 2 p kp ) 2 + 4˜ ( m + / E p = 2

  35. Mixed flux background • AdS 3 × S 3 × T 4 supported by RR+NSNS three-form flux � � � � F = ˜ q Vol AdS 3 + Vol S 3 H = q Vol AdS 3 + Vol S 3 q 2 + q 2 = 1 • Coefficients related by ˜ • Quantised WZW level √ Q NS5 = 2 π/ k = q λ ∈ Z • Dispersion relation � q 2 h 2 sin 2 p kp ) 2 + 4˜ ( m + / E p = 2 Momentum-dependent “mass” Rescaled coupling k ∼ Q NS5 / ˜ qh ∼ g s Q D5 + · · ·

  36. Mixed flux background • AdS 3 × S 3 × T 4 supported by RR+NSNS three-form flux � � � � F = ˜ q Vol AdS 3 + Vol S 3 H = q Vol AdS 3 + Vol S 3 q 2 + q 2 = 1 • Coefficients related by ˜ • Quantised WZW level √ Q NS5 = 2 π/ k = q λ ∈ Z • Dispersion relation � q 2 h 2 sin 2 p kp ) 2 + 4˜ ( m + / E p = 2 • S matrix takes the same functional form of p and E p for any q [Hoare, Tseytlin ’13] [Lloyd, OOS, Stefański, Sfondrini ’14]

  37. Bethe ansatz and the spin-chain picture

  38. Bethe ansatz equations • Impose periodic boundary conditions e ip k L = � S ( p k , p j ) j � = k • Non-diagonal S matrix − → nested Bethe equations • 3 types of momentum-carrying roots • 3 types of auxiliary roots • Simplifies in the weak coupling limit h ( λ ) → 0

  39. Massive sector At weak coupling • Two decoupled PSU ( 1, 1 | 2 ) spin-chains • The two spin-chains couple through level matching e ip total = 1 ×

  40. Massive sector At weak coupling • Two decoupled PSU ( 1, 1 | 2 ) spin-chains • The two spin-chains couple through level matching e ip total = 1 Higher orders • Sites in the ( 1 2 ; 1 2 ) L ⊗ ( 1 2 ; 1 2 ) R representation

  41. Massive sector At weak coupling • Two decoupled PSU ( 1, 1 | 2 ) spin-chains • The two spin-chains couple through level matching e ip total = 1 Higher orders • Sites in the ( 1 2 ; 1 2 ) L ⊗ ( 1 2 ; 1 2 ) R representation

  42. Massive sector At weak coupling • Two decoupled PSU ( 1, 1 | 2 ) spin-chains • The two spin-chains couple through level matching e ip total = 1 Higher orders • Sites in the ( 1 2 ; 1 2 ) L ⊗ ( 1 2 ; 1 2 ) R representation • Dynamic supersymmetries

  43. Spin-chain representation ( 1 2 ; 1 2 ) Doublet under su ( 2 ) ⊂ psu ( 1, 1 | 2 ) φ ± Dimension 1 Two bosons 2

  44. Spin-chain representation ( 1 2 ; 1 2 ) Doublet under su ( 2 ) ⊂ psu ( 1, 1 | 2 ) φ ± Dimension 1 Two bosons 2 ψ ± Two fermions Dimension 1 Doublet under su ( 2 ) • automorphism

  45. Spin-chain representation ( 1 2 ; 1 2 ) Doublet under su ( 2 ) ⊂ psu ( 1, 1 | 2 ) ∂ n φ ± Dimension 1 Two bosons 2 + n Two fermions ∂ n ψ ± Dimension 1 + n Doublet under su ( 2 ) • automorphism Derivatives generate sl ( 2 ) descendants

  46. Spin-chain representation ( 1 2 ; 1 2 ) Doublet under su ( 2 ) ⊂ psu ( 1, 1 | 2 ) ∂ n φ ± Dimension 1 Two bosons 2 + n Two fermions ∂ n ψ ± Dimension 1 + n Doublet under su ( 2 ) • automorphism Derivatives generate sl ( 2 ) descendants 1/2-BPS representation

  47. Spin-chain representation ( 1 2 ; 1 2 ) Doublet under su ( 2 ) ⊂ psu ( 1, 1 | 2 ) ∂ n φ ± Dimension 1 Two bosons 2 + n Two fermions ∂ n ψ ± Dimension 1 + n Doublet under su ( 2 ) • automorphism Derivatives generate sl ( 2 ) descendants 1/2-BPS representation In the full psu ( 1, 1 | 2 ) × psu ( 1, 1 | 2 ) (massive) spin-chain: Sites make up 8+8 primary fields φ a ˙ � 1 2 , 1 a � 2 1, 1 � 1 ψ α ˙ a ψ a α � � � 2 , 1 L R 2 D αβ � � 1, 1

  48. Massless modes in the spin-chain When we include the massless modes additional chiral representations appear as sites in the spin-chain T α ˙ ( 0, 0 ) Four free scalars β χ a ˙ � 1 α � 2 , 0 L Two ( 1 2 ; 1 2 ) ⊗ 1 multiplets ∂ L T α ˙ α � � 1, 0 χ ˙ a ˙ 0, 1 α � � R 2 Two 1 ⊗ ( 1 2 ; 1 2 ) multiplets ∂ R T α ˙ α � � 0, 1

  49. Massless modes in the spin-chain With massive + massless modes Sites in different representations – “reducible spin-chain” [OOS, Stefański, Torrielli ’12] At weak coupling Two decoupled psu ( 1, 1 | 2 ) spin-chains of different length Extra equations describing scattering between massless modes Level matching condition � � exp ip L + ip R + ip massless = 1

  50. BPS states From psu ( 1, 1 | 2 ) 2 representation theory • Primaries of three types of 1/2-BPS sites φ massive scalar χ ± massless chiral fermion L χ ± massless anti-chiral fermion R • Expect 1/2-BPS states of the form � J M � � J L � � J R � 1 2 ( J M + J L ) , 1 � � φ χ L χ R 2 ( J M + J R ) • Only completely symmetric states protected when interactions are included

  51. BPS states From psu ( 1, 1 | 2 ) 2 representation theory + interactions J massive bosons � J 2 , J � 2

  52. BPS states From psu ( 1, 1 | 2 ) 2 representation theory + interactions J massive bosons Two + two massless fermions, each appearing maximally once � J 2 , J � 2 � J � J � 2 � 2 2 + 1 2 , J 2 , J 2 + 1 2 2 � J � J � J � 4 2 + 1, J � 2 + 1 2 + 1 2 , J � 2 , J 2 + 1 2 2 � J � J � 2 � 2 2 + 1, J 2 + 1 2 + 1 2 , J 2 + 1 2 � J 2 + 1, J � 2 + 1

  53. BPS states From psu ( 1, 1 | 2 ) 2 representation theory + interactions J massive bosons Two + two massless fermions, each appearing maximally once � J 2 , J � 2 � J � J � 2 � 2 2 + 1 2 , J 2 , J 2 + 1 2 2 � J � J � J � 4 2 + 1, J � 2 + 1 2 + 1 2 , J � 2 , J 2 + 1 2 2 � J � J � 2 � 2 2 + 1, J 2 + 1 2 + 1 2 , J 2 + 1 2 � J 2 + 1, J � 2 + 1 Matches supergravity spectrum [de Boer ’98]

  54. String theory on AdS 3 × S 3 × S 3 × S 1

  55. AdS 3 × S 3 × S 3 × S 1 × × × • Supersymmetry realtes the radii: 1 1 + 1 1 1 = 1 − α = α L 2 = R 2 R 2 R 2 L 2 R 2 L 2 + − + −

  56. AdS 3 × S 3 × S 3 × S 1 × × × • Supersymmetry realtes the radii: 1 1 + 1 1 1 = 1 − α = α L 2 = R 2 R 2 R 2 L 2 R 2 L 2 + − + − One parameter family of backgrounds 0 < α < 1

  57. AdS 3 × S 3 × S 3 × S 1 × × × • Supersymmetry realtes the radii: 1 1 + 1 1 1 = 1 − α = α L 2 = R 2 R 2 R 2 L 2 R 2 L 2 + − + − • Isometries: D ( 2, 1; α ) × D ( 2, 1; α ) × U ( 1 ) ⊃ SO ( 2, 2 ) × SO ( 4 ) × SO ( 4 ) × U ( 1 ) • In the α → 0 and α → 1 limits one of the sphere blows up → obtain the AdS 3 × S 3 × T 4 background −

  58. AdS 3 × S 3 × S 3 × S 1 × × × • Unique supersymmetric geodesic on AdS 3 × S 3 × S 3 • Preserves 4 supersymmetries

  59. AdS 3 × S 3 × S 3 × S 1 × × × • Unique supersymmetric geodesic on AdS 3 × S 3 × S 3 • Preserves 4 supersymmetries • Light-cone gauge “off-shell” symmetry algebra psu ( 1 | 1 ) 2 with four central elements c.e. • Fundamental excitations m B = 2 × { 0, α , 1 − α , 1 } m F = 2 × { 0, α , 1 − α , 1 }

  60. AdS 3 × S 3 × S 3 × S 1 × × × • Unique supersymmetric geodesic on AdS 3 × S 3 × S 3 • Preserves 4 supersymmetries • Light-cone gauge “off-shell” symmetry algebra psu ( 1 | 1 ) 2 with four central elements c.e. • Fundamental excitations m B = 2 × { 0, α , 1 − α , 1 } m F = 2 × { 0, α , 1 − α , 1 } Composite?

  61. AdS 3 × S 3 × S 3 × S 1 × × × • Unique supersymmetric geodesic on AdS 3 × S 3 × S 3 • Preserves 4 supersymmetries • Light-cone gauge “off-shell” symmetry algebra psu ( 1 | 1 ) 2 with four central elements c.e. • Fundamental excitations m B = 2 × { 0, α , 1 − α , 1 } m F = 2 × { 0, α , 1 − α , 1 } • Form 1 + 1 dimensional representations of psu ( 1 | 1 ) 2 c.e.

  62. AdS 3 × S 3 × S 3 × S 1 × × × Off-shell symmetry algebra gives • Dispersion relation � q 2 h 2 sin 2 p kp ) 2 + 4˜ E p = ( m + / 2 • Matrix form of S matrix • 9 dressing phases

  63. Summary

  64. Summary Integrability in AdS 3 / CFT 2 Discussed string theory on AdS 3 × S 3 × T 4 • Supported by RR+NSNS flux • Classical theory is integrable • Quantum theory: light-cone gauge • Constructed “off-shell” symmetry algebra • Exact dispersion relation • All-loop S matrix – satisfies Yang-Baxter equation • Spin-chain picture from Bethe equations Results generalise to AdS 3 × S 3 × S 3 × S 1

  65. Outlook Open string theory questions • Dressing phases – solve crossing equations [Work in progress] • Match with perturbation theory [Sundin, Wulff ’12–’15] [Engelund, McKeown, Roiban ’13] [Bianchi, Hoare ’14] • S matrix matches with perturbative results • Two-loop missmatch for massless dispersion relation p 3 p 3 E Exact E Pert = p − 24 h 2 + · · · = p − 4 π 2 h 2 + · · · p p • Massless su ( 2 ) ◦ S matrix • Winding modes on T 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend