q poincar e supersymmetry
play

q -Poincar e supersymmetry in AdS 5 /CFT 4 Riccardo Borsato based - PowerPoint PPT Presentation

q -Poincar e supersymmetry in AdS 5 /CFT 4 Riccardo Borsato based on arXiv:1706.10265 with A. Torrielli IGST17 Paris 18 July 2017 q -Poincar e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato Strings on AdS 5 S 5 and N = 4 super


  1. q -Poincar´ e supersymmetry in AdS 5 /CFT 4 Riccardo Borsato based on arXiv:1706.10265 with A. Torrielli IGST17 Paris 18 July 2017 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  2. Strings on AdS 5 × S 5 and N = 4 super Yang-Mills in the planar limit Exact S-matrix governing scattering of worldhseet excitations / magnons on spin-chain ∆ op ( Q ) R = R ∆( Q ) , R = Π S Yang-Baxter equation charges on 2-particle states ⇐ ⇒ coproduct ∆ q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  3. • S -matrix invariant under centrally extended psu (2 | 2) [Beisert ’05] not of difference form • non linear constraint among central charges and braided coproducts • non-standard Yangian [Beisert ’07] • secret symmetry ˆ B [Matsumoto, Moriyama, Torrielli ’07] • R T T formulation [Beisert, de Leeuw ’14] universal formulation? • outer automorphisms seem to play a role see e.g. [Beisert, Hecht, de Leeuw ’16] q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  4. Here: new “boost” symmetry of S -matrix q -Poincar´ e supersymmetry No superimposed deformation Standard AdS 5 /CFT 4 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  5. q -Poincar´ e in AdS 5 /CFT 4 � √ 1 + 4 g 2 sin 2 p H = h p 1 , P = p 1 , h p = 2 , g = λ/ 2 π Dispersion relation as Casimir of q -Poincar´ e [Gomez, Hernandez ’07] � K − K − 1 � [ J , H ] = g 2 K ≡ exp( i P ) [ J , P ] = i H , , 2 Obtained as q → 1 contraction of U q ( sl 2 ) [Celeghini et al.’90] 1 = C = H 2 + g 2 ( K 1 2 − K − 1 2 ) 2 Boost generates translations on rapidity torus J = i d 2 dz Classical limit is 2D Poincar´ e J → g J , P → P / g and g → ∞ : C = H 2 − P 2 [ J , P ] = i H , [ J , H ] = i P , q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  6. q -Poincar´ e in AdS 5 /CFT 4 [Young ’07] q -Poincar´ e superalgebra: reformulation and extension of psu (2 | 2) c . e . � � a α ] = ig 1 2 + K − 1 [ J , Q a K Q α , [ J , P ] = i H , 2 4 � � � K − K − 1 � α [ J , H ] = g 2 a ] = ig 1 2 + K − 1 Q α [ J , Q K a , , 2 4 2 2 ǫ αβ ǫ ab � � 1 2 − K − 1 β } = ig { Q a α , Q b K , etc. 2 Exact (fundamental) magnon repr. from boosting rest-frame repr. Coproducts (for subalgebra) 1 2 + K − 1 2 ⊗ H , ∆( P ) = P ⊗ 1 + 1 ⊗ P , ∆( H ) = H ⊗ K 1 2 + K − 1 2 ⊗ J , ∆( J ) = J ⊗ K etc. ∆ op ( H ) R � = R ∆( H ) Not symmetries of R -matrix! q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  7. Reminder: massless sector of AdS 3 /CFT 2 Wait for Alessandro’s talk for latest news on AdS 3 /CFT 2 ! [Stromwall, Torrielli ’16] [Fontanella, Torrielli ’16] H = h p 1 in massless case h p = 2 g sin p 2 , p ∈ [0 , 2 π ] � � 1 2 + K − 1 ⇒ 2 g sin p 1 + p 2 � = 2 g (sin p 1 2 + sin p 2 2 ⊗ H = ∆( H ) = H ⊗ K 2 ) 2 Cocommutative = ⇒ H is symmetry of R 1 2 + K − 1 2 ⊗ J + tail ∆( J ) = J ⊗ K J = i H ∂ p still not symmetry of R but annihilates it ∆( J ) R = 0 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  8. q -Poincar´ e supersymmetry in AdS 5 / CFT 4 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  9. Boost in AdS 5 /CFT 4 as a symmetry of R [RB, Torrielli ’17] α ⊗ K − 1 1 Usual coproducts ∆( H ) = H ⊗ 1 + 1 ⊗ H , ∆( Q a α ) = Q a 4 + K 4 ⊗ Q a α , etc. Demand [∆ a , ∆ b ] = ∆[ a , b ] in fundamental representation ∆( J ) = ∆ ′ ( J ) + T H ˆ B + T psu (2 | 2) + T 1 J = i H ∂ p , � 1 − s 12 � � 1 + s 12 � ∆ ′ ( J ) = J ⊗ 1 + 1 ⊗ J , h 1 h 2 1 + x − p x + s 12 = g sin p 1 + sin p 2 − sin( p 1 + p 2 ) 2 h p p , w p = g sin p = 2 w − 1 − w − 1 x − p + x + 2 p 1 2 B = 1 1 1 − tan p 2 ⊗ tan p � � � � H ⊗ ˆ B + ˆ B ⊗ H T H ˆ , 2 w 1 − w 2 2 T psu (2 | 2) = 1 w 1 + w 2 � K − 1 α ⊗ K − 1 α 1 α 1 4 Q a 4 Q a 4 Q 4 Q − K ⊗ K a a α 2 w 1 − w 2 � + L b a ⊗ L a b − R β α ⊗ R α . β q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  10. Boost in AdS 5 /CFT 4 as a symmetry of R 0 = ∆ op ( J ) R − R ∆( J ) = D R + T op R − R T = ( f 12 + T op − T 1 ) R 1 D ≡ i ( h 1 − s 12 ) ∂ p 1 + i ( h 2 + s 12 ) ∂ p 2 ( f op = − f ) f 12 is function, solve equation by T 1 = 1 2 f 12 1 + symm J is symmetry! Different scalar factor R ′ = e Φ 12 R = ⇒ shift of T 1 = 1 2 [ f 12 + D Φ 12 ] 1 It would be interesting to compute D θ BES [Beisert,Eden,Staudacher ’06] If ∆( J ) (including T 1 ) were a priori known, it would constrain Φ 12 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  11. Boost in AdS 5 /CFT 4 as a symmetry of R Crossing symmetry ⇐ ⇒ antipode Hopf algebra = bialgebra + antipode S ( H ) = − H , S ( Q ) = − Q , etc. Not all Φ 12 solve crossing ⇐ ⇒ not all T 1 compatible with antipode q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  12. Antipode µ : µ ◦ ( S ⊗ 1) ◦ ∆( J ) = 0 ∆ : � � c (1) S ( J ) = − J − F p + d p 1 . p ���� ���� ���� ∆ ′ ( J ) T psu (2 | 2) T 1 � � c (2) From µ ◦ (1 ⊗ S ) ◦ ∆( J ) = 0 S ( J ) = − J − F p − d p 1 p ⇒ c (1) = c (2) Example : T 1 = 1 2 f 12 1 = = 0 = ⇒ not compatible p p q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  13. Limit g → 0 β { Q a b } = δ a b R β α + δ β α L a b + 1 2 δ a b δ β α , Q α H , [ J , P ] = i H , Coproduct remains non-trivial Boost J = i 1 ∂ p in this limit related to operators used in [Bargheer, Beisert, Loebbert ’08,’09] to generate long-range spin-chains ======================================= Limit g → ∞ ( J → g J , P → P / g ) Classical Poincar´ e superalgebra , cf. [Berenstein, Maldacena, Nastase ’02] Trivial coproducts ∆( J ) = J ⊗ 1 + 1 ⊗ J , etc. ε → 0 Obtained by contraction of d (2 , 1; ε ) ⊃ sl 2 − − − → 2D Poincar´ e [Young ’07] − − − − − − − − − a + Y a ˙ a + Y ′ ′ a ˙ a + . . . ) Local charge on the w.s. ( H = 1 a P a ˙ a Y a ˙ 4 P a ˙ a Y a ˙ � J = d σ ( σ H + τ P ) q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  14. Cobracket ∆( J ) − ∆ op ( J ) = g − 1 δ ( J ) + O ( g − 2 ) δ ( J ) = [ J ⊗ 1 + 1 ⊗ J , r ] We use r of [Beisert, Spill ’07] and assume [ J , B 0 ] = − 2 i B − 1 � � 2 q n − 1 − 1 and [ J , q n ] = ˜ q n + in 2 q n +1 , (˜ q 0 ≡ [ J , q 0 ]) In evaluation repr. we find � � δ ( J ) = u 1 + u 2 α α Q a a ⊗ Q a α + L b a ⊗ L a b − R β α ⊗ R α α ⊗ Q a − Q β u 1 − u 2 1 + ( B 1 ⊗ H + H ⊗ B 1 ) . u 1 − u 2 g →∞ − − − − → u , like spectral parameter of Yangian Notice that w q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  15. Higher partners for J ? [Beisert ’10] classical limit U q ( psu (2 | 2) c . e . ) R -matrix − − − − − − − → trigonometric classical r -matrix Deformation of loop algebra gl (2 | 2)[ z , z − 1 ], loop parameter z Extension of the algebra by derivation rational limit → ˜ D = z d d cf. boost J = i 2 (4 − u 2 ) d − − − − − − − D = du , dz du −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− [RB, Torrielli ’17] U q ( � sl 2 ) in Drinfeld’s second realisation, generated by h n , e ± n , n ∈ Z q = e ε µ q -affine Poincar´ e from contraction ε → 0 , H m = µε ( e + m + e − J m = 1 2 ( e + m − e − m ) , m ) , P m = − i µε h m q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  16. U q ( d (2 , 1; ε )) q -Poincar´ e superalgebra ? U q ( sl 2 ) q -Poincar´ e ε → 0 g → ∞ q → 1 g → ∞ q → 1 sl 2 Poincar´ e ε → 0 d (2 , 1; ε ) Poincar´ e superalgebra ε → 0 ...if it worked one may go to the affine case it would also help for the universal formulation q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  17. Conclusions Boost J is symmetry of AdS 5 / CFT 4 R -matrix Deformed symmetry algebra where ’t Hooft coupling is def. parameter • compute T 1 for normalisation of R with BES. Compatibility with antipode? • boost on spin-chain at weak coupling • Quantum corrections to J on worldsheet at strong coupling, non-locality • insights for universal formulation? Contraction of quantum group? see also [Beisert,Hecht,Hoare ’17] Affine case? • AdS d +1 /CFT d (e.g. AdS 3 /CFT 2 [RB, Torrielli, in preparation] ) • other manifestations of boost in AdS/CFT (cf. secret symmetry) q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  18. q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

  19. A contraction of U q ( d (2 , 1; ε )) q h i − q − h i [ h i , e ± j ] = ± a ij e ± { e + i , e − [ h i , h j ] = 0 , j , j } = δ ij q − q − 1 , � � 0 ε − 1 � 2 , q = e a ij = 0 1 − ε ε − 1 1 − ε 0 ε → 0 U q ( d (2 , 1; ε )) ⊃ U q ε ( sl 2 ) − − − → 2D q -Poincar´ e � � Q 41 = 2 h 1 − iq e − 2 q − 1 1 2 h 2 e + 1 Supercharges? , etc. √ 1 2 � � q ( h 1 + h 2 ) − q − ( h 1 + h 2 ) { Q 41 , Q 32 } = − i ? 1 2 − K − 1 → − ig + rest − K , 2 2 2 q − q − 1 q ( h 1 − h 2 ) − q − ( h 1 − h 2 ) 23 } = − 1 → − R 34 + L 12 − 1 ? { Q 41 , Q − + rest 2 H . q − q − 1 2 q -Poincar´ e supersymmetry in AdS 5 / CFT 4 Riccardo Borsato

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend