ads cft correspondence and integrability
play

AdS/CFT Correspondence and Integrability Kazuhiro Sakai ( Keio - PowerPoint PPT Presentation

Nagoya U. 2009-01-15 AdS/CFT Correspondence and Integrability Kazuhiro Sakai ( Keio University ) Based on collaborations with N.Beisert, N.Gromov, V .Kazakov, Y .Satoh, P .Vieira, K.Zarembo 1 0 . Introduction AdS/CFT correspondence --- a


  1. Nagoya U. 2009-01-15 AdS/CFT Correspondence and Integrability Kazuhiro Sakai ( Keio University ) Based on collaborations with N.Beisert, N.Gromov, V .Kazakov, Y .Satoh, P .Vieira, K.Zarembo 1

  2. 0 . Introduction AdS/CFT correspondence --- a gauge/string duality ( Maldacena ’97, Gubser - Klebanov - Polyakov ’97, Witten ’97 ) N = 4 U( N ) super Yang-Mills planar • gluon dynamics common to QCDs IIB superstrings on AdS 5 x S 5 free • superstrings in the simplest curved background • limit integrability N → ∞ 2

  3. AdS/CFT correspondence D 3 - brane = black hole like solution l s � R l s � R x 4 ∼ x 9 R R soliton supergravity background 3

  4. D 3 - branes near horizon geometry x 0 ∼ x 3 x 0 ∼ x 4 x 5 ∼ x 9 x x 4 ∼ x 9 S 5 AdS 5            N open string U ( N ) gauge field closed String AdS 5 /CFT 4 correspondence • low energy limit type IIB superstrings = 4- dim N = 4 U ( N ) gauge theory on AdS 5 x S 5 4

  5. gauge theory: string theory: 4 - dim action 2 - dim worldsheet action S = 1 � � √ d 2 σ [ G µν ∂ a X µ ∂ a X ν + · · · ] d 4 x [( F µν ) 2 + · · · ] S σ = λ λ 1 coupling const.: λ coupling const.: √ λ λ � 1 : weakly interacting gauge theory quantum strings λ � 1 : strongly interacting gauge theory ( semi -) classical strings 5

  6. 1997-2002 ( BPS states = atypical reps. of supersymmetry algebras ) BPS states: no quantum corrections ( coupling const. independent ) 2003- non - BPS states: quantum corrections ( coupling const. dependent ) N → ∞ limit integrability planar N = 4 gauge theory free strings on AdS g s = 0 ( ) 6

  7. Strong/weak correspondence λ λ � 1 λ → ∞ quantum strings classical strings super Y ang - Mills on AdS 5 x S 5 at one - loop higher loops conventional sigma model spin chain on a coset space ( expected to be ) integrable integrable integrable ( Minahan - Zarembo ’02 ) ( Bena - Roiban - Polchinski ’03 ) at general λ ( Beisert - Staudacher ’03 ) particle model ( Beisert ’03 ) ( Staudacher ’04 ) ( Beisert ’05 ) ( L → ∞ ) 7

  8. Plan of the talk 1. Super Y ang - Mills at one - loop ( spin chain ) 2. Classical string theory ( classical sigma model ) 3. All - order SYM/quantum strings ( particle model ) 8

  9. = = = 1 . N = 4 Super Yang-Mills N = 4 gauge multiplet                                N = 2 vector multiplet N = 2 hypermultiplet                       N = 1 N = 1 N = 1 N = 1 vector chiral chiral chiral multiplet multiplet multiplet multiplet                                             A µ Ψ 2 Ψ 3 Ψ 4 Ψ 1 X Z Y Φ 1 + i Φ 2 Φ 3 + i Φ 4 Φ 5 + i Φ 6 9

  10. N = 4 Super Yang-Mills 1 � ( F µν ) 2 + 2( D µ Φ i ) 2 − ([Φ i , Φ j ]) 2 L = − Tr 4 g 2 YM � + 2 i ¯ D Ψ − 2 ¯ Ψ / ΨΓ i [Φ i , Ψ] Global symmetry: SO (4 , 2) × SU (4) ⊂ P SU (2 , 2 | 4) Φ ab  ¯ Q Q +1    ¯ Ψ b  Ψ αb P  α ˙      ¯ F ˙ D ˙ αβ Φ ab F αβ  α ˙  β    V F αβ ¯ Ψ d D ˙ D ˙ αβ Ψ γ d γ ˙     D ¯ F DD Φ DF        DD ¯ Ψ DD Ψ     10

  11. Conformal Field Theory ● Correlation function of local operators �O 1 ( x 1 ) O 2 ( x 2 ) � B 12 = δ D 1 D 2 | x 12 | D 1 + D 2 �O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) � C 123 = | x 12 | D 1 + D 2 − D 3 | x 23 | D 2 + D 3 − D 1 | x 31 | D 3 + D 1 − D 2 O i D i : scaling dimension of the local operator 11

  12. ● Single trace operators O = Tr[ W A 1 W A 2 · · · W A J ] W A ∈ { D k Φ , D k Ψ , D k ¯ Ψ , D k F } ( Beisert ’03 ) - dominant in the large N limit ● Scaling dimension: ˆ eigenvalue of the Dilatation operator D ● At tree level: ˆ D 0 O = dim( O ) O [Ψ] = 3 [Φ] = 1 , [ F ] = 2 , [ D ] = 1 2 , 12

  13. ● Quantum correction: operator mixing O � = ˆ DO Φ Ψ Φ Φ Ψ F O Φ Ψ Φ Ψ Φ F ˆ : non - diagonal matrix spectral problem D ∞ λ n ˆ � ˆ λ = g 2 D = D n YM N ( ’t Hooft coupling ) n =0 su (2 , 2 | 4) ˆ ⇔ Hamiltonian of spin chain D 1 ( Minahan - Zarembo ’02 ) ( Beisert - Staudacher ’03 ) 13

  14. ⇔ ⇔ ● SU(2) subsector ↓ ↓ ↓ ↓ ↓ ↓ ↓ Tr Z L ↓ ↓ ↓ ↓ ↓ ferromagnetic vacuum X = Φ 1 + i Φ 2 Z = Φ 5 + i Φ 6 ↑ ↓ ↓ ↑ ↓ ↓ ↓ Tr( ZZZXZXZZ · · · ) ↓ ↓ ↓ ↓ ↓ XXX Heisenberg Spin chain L � ) H = ( − l +1 l +1 l =1 l l 14

  15. Bethe ansatz equation ( coordinate Bethe ansatz ) One - magnon states L l � | Ψ( p ) � = ψ ( l ) | ↑ · · · ↑ ↓ ↑ · · · ↑� l =1 ψ ( l ) = e ipl Schrödinger Eq. H | Ψ � = E | Ψ � L � ) H = ( − l +1 l +1 l =1 l l 2 − e ip − e − ip E = 4 sin 2 p = : Dispersion relation 2 15

  16. Two - magnon states l 1 l 2 � | Ψ( p 1 , p 2 ) � = ψ ( l 1 , l 2 ) | ↑ · · · ↑ ↓ ↑ · · · ↑ ↓ ↑ · · · ↑� 1 ≤ l 1 <l 2 ≤ L H | Ψ � = E | Ψ � Schrödinger Eq. 2 4 sin 2 p k � ( dispersion relation ) E = 2 k =1 ψ ( l 1 , l 2 ) = e ip 1 l 1 + ip 2 l 2 + S ( p 2 , p 1 ) e ip 1 l 2 + ip 2 l 1 ( Bethe’s ansatz ) S ( p 1 , p 2 ) = − e ip 1 + ip 2 − e 2 ip 1 + 1 S - matrix e ip 1 + ip 2 − e 2 ip 2 + 1 16

  17. Integrability of 2 D particle models ‣ Factorization of multi - particle scattering amplitudes = = 3 1 3 1 3 1 2 2 2 E ( p ) � dispersion relation for 1 particle ˆ scattering matrix for 2 particles S ( p 1 , p 2 ) � � all scattering amplitudes are determined spectra of conserved charges 17

  18. Factorized scattering ψ ( p 2 , p 1 , p 3 , . . . , p J ) = S ( p 1 , p 2 ) ψ ( p 1 , p 2 , p 3 , . . . , p J ) Periodic boundary condition ψ ( p 2 , . . . , p J , p 1 ) = e − ip 1 L ψ ( p 1 , . . . , p J ) Y ang equations J e ip k L = � S ( p k , p l ) l � = k � ∂ p u = 1 � 2 cot p rapidity variable ∂ u = E 2 Bethe ansatz equations � L � J u k + i u k − u l + i � 2 ( k = 1 , . . . , J ) = u k − i u k − u l − i 2 l � = k 18

  19. Local Charges Momentum i ln u k + i 1 � 2 P = Q 1 = u k − i k 2 Energy � � i i � E = Q 2 = − u k + i u k − i k 2 2 Higher charges � � 1 i i � Q r = 2 ) r − 1 − ( u k + i ( u k − i r − 1 2 ) r − 1 k 19

  20. 2. Classical strings • AdS/CFT Correspondence IIB Superstrings on N = 4 U( N ) x Super Y ang - Mills S 5 AdS 5 SO (4 , 2) × SO (6) ⊂ P SU (2 , 2 | 4) R 4 = 4 πg s α � 2 N λ = g 2 Y M N g 2 Y M = g s N → ∞ 4 πλ = R 4 α � 2 20

  21. E = L L � �� � x O = Tr( ZZZ · · · ZZZ ) L O = Tr( Z · · · X · · · ¯ Y · · · Z ) x + · · · O = Tr( Z · · · ∇ s Z · · · ∇ s � Z · · · Z ) x + · · · 21

  22. R t × S n Sigma model on √ λ � dσdτ [ − ∂ a X 0 ∂ a X 0 + ∂ a X i ∂ a X i + Λ ( X i X i − 1)] S = 4 π ( i = 1 , . . . , n ) Equations of motion ∂ + ∂ − X i + ( ∂ + X j ∂ − X j ) X i = 0 , ∂ + ∂ − X 0 = 0 Gauge: X 0 = κτ ∆ : energy of the string κ = ∆ � 2 π � � √ λ √ ∆ = dσ∂ τ X 0 = λκ √ λ 2 π 0 Virasoro constraints ( ∂ ± X i ) 2 = ( ∂ ± X 0 ) 2 = κ 2 22

  23. Examples of classical string solutions in S 2 × R t point - like string pulsating string folded string circular string 23

  24. giant magnon ∆ ϕ ( Hofman - Maldacena ’06 ) p 24

  25. circular string   sn( κσ | k ) cos ωτ k = ω � sn( κσ | k ) sin ωτ X =   κ cn( κσ | k ) folded string   k sn( ωσ | k ) cos ωτ k = κ � k sn( ωσ | k ) sin ωτ X =   ω dn( ωσ | k ) 25

  26. R t × S 3 Sigma model on SU ( 2 ) Principal Chiral Field Model ∼ = � X ∈ S 3 g ∈ SU(2) ↔ � � X 1 + iX 2 X 3 + iX 4 g = − X 3 + iX 4 X 1 − iX 2 Right current j = − g − 1 dg d j − j ∧ j = 0 , d ∗ j = 0 Virasoro constraints 1 2Tr j 2 ± = − κ 2 26

  27. Lax Connection 1 x a ( x ) = 1 − x 2 j + 1 − x 2 ∗ j x : spectral parameter d j − j ∧ j = 0 d a ( x ) − a ( x ) ∧ a ( x ) = 0 d ∗ j = 0 [ L ( x ) , M ( x )] = 0 Lax pair L ( x ) = ∂ σ − a σ ( x ) = ∂ σ − 1 � j + j − � 1 − x − 2 1 + x M ( x ) = ∂ τ − a τ ( x ) = ∂ τ − 1 � j + j − � 1 − x + 2 1 + x 27

  28. Auxiliary Linear Problem � ∂ σ Ψ = a σ Ψ � L ( x )Ψ( x ; τ , σ ) = 0 M ( x )Ψ( x ; τ , σ ) = 0 ∂ τ Ψ = a τ Ψ � σ Ψ( x ; τ, σ ) = P exp a σ dσ 0 Monodromy matrix Ψ( x ; τ, σ + 2 π ) = Ω( x ; τ, σ )Ψ( x ; τ, σ ) � 2 π Ω ( x ; τ, σ ) = P exp a σ dσ 0 28

  29. τ Monodromy matrix σ Ω ( x ; ˜ τ , ˜ σ ) (˜ τ , ˜ σ ) (˜ τ , ˜ σ + 2 π ) σ ) = U − 1 Ω ( x ; τ, σ ) U Ω ( x ; ˜ τ, ˜ Ω ( x ; τ, σ ) ( τ , σ + 2 π ) ( τ , σ ) e ip 1 ( x ) � � 0 Ω( x ) ∼ e ip 2 ( x ) 0 p 1 ( x ) = − p 2 ( x ) =: p ( x ) quasi - momentum 29

  30. Spectral curve ( Kazakov - Marshakov - Minahan - Zarembo ’04 ) p 1 ( x ) x p 2 ( x ) x = − 1 x = +1 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend