rectangular w algebras of types so and sp and dual coset
play

Rectangular W-algebras of types so and sp and dual coset CFTs - PowerPoint PPT Presentation

Rectangular W-algebras of types so and sp and dual coset CFTs Takahiro Uetoko (Ritsumeikan Univ.) Based on: [arXiv:1906.05872] w/ Thomas Creutzig (Alberta Univ.), Yasuaki Hikida (YITP, Kyoto Univ.) Aug. 22 (2019) @YITP Strings and Fields


  1. Rectangular W-algebras of types so and sp and dual coset CFTs Takahiro Uetoko (Ritsumeikan Univ.) Based on: [arXiv:1906.05872] w/ Thomas Creutzig (Alberta Univ.), Yasuaki Hikida (YITP, Kyoto Univ.) Aug. 22 (2019) @YITP “Strings and Fields 2019” 1

  2. Introduction • Strings and Higher spins String theory Higher spin gravity First Regge trajectory Vasiliev theory Tensionless limit [Gross ’88] 2

  3. Introduction • Strings and Higher spins String theory Higher spin gravity First Regge trajectory Vasiliev theory Tensionless limit [Gross ’88] - String spectrum First Regge trajectory ( mass ) 2 ( mass ) 2 Vasiliev theory ( spin ) ( spin ) 3

  4. Introduction • Strings and Higher spins String theory Higher spin gravity How to explain First Regge trajectory Vasiliev theory the higher Regge trajectories? Tensionless limit [Gross ’88] - String spectrum First Regge trajectory ( mass ) 2 ( mass ) 2 Vasiliev theory ( spin ) ( spin ) 4

  5. Introduction • Strings and Extended higher spins Higher spin gravity String theory Vasiliev theory All Regge trajectory with � matrix valued fields M × M 5

  6. Introduction • Strings and Extended higher spins Higher spin gravity String theory Vasiliev theory All Regge trajectory with � matrix valued fields M × M • Matrix extension of 3d Prokushkin-Vasiliev theory may be analyzed with the infinite dimensional symmetry of 2d CFT [Creutzig-Hikida ’13] 6

  7. Introduction • Strings and Extended higher spins Higher spin gravity String theory Vasiliev theory All Regge trajectory with � matrix valued fields M × M • Matrix extension of 3d Prokushkin-Vasiliev theory may be analyzed with the infinite dimensional symmetry of 2d CFT [Creutzig-Hikida ’13] - Dual model is 2d Grassmannian-like coset With � , this reduce to su ( N + M ) k M = 1 the Gaberdiel-Gopakumar duality su ( N ) k ⊕ u (1) kNM ( N + M ) [Gaberdiel-Gopakumar ’10] - Evidence: spectrum, asymptotic symmetry, … [Creutzig-Hikida-Rønne ’13, Creutzig-Hikida ’18] 7

  8. Introduction • Strings and Extended higher spins Can we generalize Higher spin gravity String theory Vasiliev theory All Regge trajectory this analysis to other models? with � matrix valued fields M × M • Matrix extension of 3d Prokushkin-Vasiliev theory may be analyzed with the infinite dimensional symmetry of 2d CFT [Creutzig-Hikida ’13] - Dual model is 2d Grassmannian-like coset With � , this reduce to su ( N + M ) k M = 1 the Gaberdiel-Gopakumar duality su ( N ) k ⊕ u (1) kNM ( N + M ) [Gaberdiel-Gopakumar ’10] - Evidence: spectrum, asymptotic symmetry, … [Creutzig-Hikida-Rønne ’13, Creutzig-Hikida ’18] 8

  9. Introduction • Our question and summary Can we generalize this analysis to other models? An answer (my talk) • We consider 2 ways to truncate the DOF - Restricted matrix extensions; � so ( M ), sp ( M ) - Even spin truncation of � hs [ λ ] • We propose the dual coset model and examine the asymptotic symmetry 9

  10. Plan of talk 1. Introduction 2. HS gravity with � gauge sector sl ( M ) 3. Some generalization for extended HS gravity 4. Summary 10

  11. Plan of talk 1. Introduction 2. HS gravity with � gauge sector sl ( M ) 3. Some generalization for extended HS gravity 4. Summary 11

  12. HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] 12

  13. � HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] hs [ λ ] = B [ λ ] ⊖ 1 Include higher spin U ( sl (2)) B [ λ ] = ⟨ C 2 − 1 4 ( λ 2 − 1) 1 ⟩ - 3d HS gravity: [Prokushkin-Vasiliev ’98] hs [ λ ] 13

  14. � � HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] hs [ λ ] = B [ λ ] ⊖ 1 Include higher spin U ( sl (2)) B [ λ ] = ⟨ C 2 − 1 4 ( λ 2 − 1) 1 ⟩ - 3d HS gravity: [Prokushkin-Vasiliev ’98] CS theory with gravitational � hs [ λ ] sl ( n ) sl (2) [ � � ] λ = n ( n = 2,3,…) Ex) principal embedding sl ( n ) = sl (2) ⊕ ( ) n ⨁ g ( s ) s =3 spin-(s-1) representation 14

  15. � � HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] hs [ λ ] = B [ λ ] ⊖ 1 Include higher spin U ( sl (2)) B [ λ ] = ⟨ C 2 − 1 4 ( λ 2 − 1) 1 ⟩ - 3d HS gravity: [Prokushkin-Vasiliev ’98] CS theory with gravitational � hs [ λ ] sl ( n ) sl (2) [ � � ] λ = n ( n = 2,3,…) Ex) principal embedding Matrix extension sl ( n ) = sl (2) ⊕ ( ) n ⨁ g ( s ) [Gaberdiel-Gopakumar ’13, Creutzig-Hikida-Rønne ’13] - 3d HS gravity with � fields: M × M s =3 spin-(s-1) representation hs M [ λ ] ≃ gl ( M ) ⊗ B [ λ ] ⊖ 1 M ⊗ 1 ≃ sl ( M ) ⊗ 1 ⊕ 1 M ⊗ hs [ λ ] ⊕ sl ( M ) ⊗ hs [ λ ] 15

  16. � � HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] hs [ λ ] = B [ λ ] ⊖ 1 Include higher spin U ( sl (2)) B [ λ ] = ⟨ C 2 − 1 4 ( λ 2 − 1) 1 ⟩ - 3d HS gravity: [Prokushkin-Vasiliev ’98] CS theory with gravitational � hs [ λ ] sl ( n ) sl (2) [ � � ] λ = n ( n = 2,3,…) Ex) principal embedding Matrix extension sl ( n ) = sl (2) ⊕ ( ) n ⨁ g ( s ) [Gaberdiel-Gopakumar ’13, Creutzig-Hikida-Rønne ’13] - 3d HS gravity with � fields: M × M s =3 spin-(s-1) representation hs M [ λ ] ≃ gl ( M ) ⊗ B [ λ ] ⊖ 1 M ⊗ 1 ≃ sl ( M ) ⊗ 1 ⊕ 1 M ⊗ hs [ λ ] ⊕ sl ( M ) ⊗ hs [ λ ] sl ( M ) ⊗ 1 n ⊕ 1 M ⊗ sl ( n ) ⊕ sl ( M ) ⊗ sl ( n ) ≃ sl ( Mn ) [ � ] λ = n Include gravitational � sl (2) 16

  17. � � � HS gravity with � gauge sector sl ( M ) • Chern-Simons description of HS gravity - 3d gravity: � CS theory sl (2) [Witten ’88] hs [ λ ] = B [ λ ] ⊖ 1 We examine � CS theory Include higher spin sl ( Mn ) U ( sl (2)) B [ λ ] = ⟨ C 2 − 1 4 ( λ 2 − 1) 1 ⟩ - 3d HS gravity: [Prokushkin-Vasiliev ’98] decomposed as CS theory with gravitational � hs [ λ ] sl ( n ) sl (2) [ � � ] λ = n ( n = 2,3,…) Ex) principal embedding Matrix extension sl ( n ) = sl (2) ⊕ ( sl ( Mn ) ≃ sl ( M ) ⊗ 1 n ⊕ 1 M ⊗ sl ( n ) ⊕ sl ( M ) ⊗ sl ( n ) ) n ⨁ g ( s ) [Gaberdiel-Gopakumar ’13, Creutzig-Hikida-Rønne ’13] - 3d HS gravity with � fields: M × M s =3 spin-(s-1) representation hs M [ λ ] ≃ gl ( M ) ⊗ B [ λ ] ⊖ 1 M ⊗ 1 ≃ sl ( M ) ⊗ 1 ⊕ 1 M ⊗ hs [ λ ] ⊕ sl ( M ) ⊗ hs [ λ ] sl ( M ) ⊗ 1 n ⊕ 1 M ⊗ sl ( n ) ⊕ sl ( M ) ⊗ sl ( n ) ≃ sl ( Mn ) [ � ] λ = n Include gravitational � sl (2) 17

  18. HS gravity with � gauge sector sl ( M ) • Gauge field (Solution of EOM) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ z , ¯ z ρ → ∞ 18

  19. HS gravity with � gauge sector sl ( M ) • Gauge field (Solution of EOM) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ z , ¯ z Include higher spin - 3d HS gravity: A = e − ρ V 2 0 a ( z ) e ρ V 2 0 dz + V 2 0 d ρ ρ → ∞ Ex) � case of � V s s = 2 − s +1, ⋯ , s − 1 V 2 0,±1 ≡ L 0,±1 19

  20. HS gravity with � gauge sector sl ( M ) • Gauge field (Solution of EOM) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ z , ¯ z Include higher spin - 3d HS gravity: A = e − ρ V 2 0 a ( z ) e ρ V 2 0 dz + V 2 0 d ρ ρ → ∞ Matrix extension Ex) � case of � V s s = 2 − s +1, ⋯ , s − 1 V 2 0,±1 ≡ L 0,±1 - 3d HS gravity with � fields: M × M A = e − ρ ( 1 M ⊗ V 2 0 ) a ( z ) e ρ ( 1 M ⊗ V 2 0 ) dz + ( 1 M ⊗ V 2 0 ) d ρ 20

  21. HS gravity with � gauge sector sl ( M ) • Asymptotically AdS condition Asymptotically AdS ( A − A AdS ) | ρ →∞ = 𝒫 (( e ρ ) 0 ) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ - 3d HS gravity: A = e − ρ V 2 0 a ( z ) e ρ V 2 0 dz + V 2 0 d ρ - 3d HS gravity with � fields: M × M A = e − ρ ( 1 M ⊗ V 2 0 ) a ( z ) e ρ ( 1 M ⊗ V 2 0 ) dz + ( 1 M ⊗ V 2 0 ) d ρ 21

  22. HS gravity with � gauge sector sl ( M ) • Asymptotically AdS condition Asymptotically AdS ( A − A AdS ) | ρ →∞ = 𝒫 (( e ρ ) 0 ) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ a ( z ) = L 1 + 1 T ( z ) L − 1 k CS Virasoro generator - 3d HS gravity: A = e − ρ V 2 0 a ( z ) e ρ V 2 0 dz + V 2 0 d ρ - 3d HS gravity with � fields: M × M A = e − ρ ( 1 M ⊗ V 2 0 ) a ( z ) e ρ ( 1 M ⊗ V 2 0 ) dz + ( 1 M ⊗ V 2 0 ) d ρ 22

  23. � HS gravity with � gauge sector sl ( M ) • Asymptotically AdS condition Asymptotically AdS ( A − A AdS ) | ρ →∞ = 𝒫 (( e ρ ) 0 ) - 3d gravity: A = e − ρ L 0 a ( z ) e ρ L 0 dz + L 0 d ρ a ( z ) = L 1 + 1 T ( z ) L − 1 k CS Virasoro generator - 3d HS gravity: W N generators A = e − ρ V 2 0 a ( z ) e ρ V 2 0 dz + V 2 0 d ρ n ∑ a ( z ) = V 2 W ( s ) ( z ) V s 1 + − s +1 s =2 - 3d HS gravity with � fields: M × M A = e − ρ ( 1 M ⊗ V 2 0 ) a ( z ) e ρ ( 1 M ⊗ V 2 0 ) dz + ( 1 M ⊗ V 2 0 ) d ρ 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend