lgebra linear e aplica es rectangular systems and echelon
play

lgebra Linear e Aplicaes RECTANGULAR SYSTEMS AND ECHELON FORMS - PowerPoint PPT Presentation

lgebra Linear e Aplicaes RECTANGULAR SYSTEMS AND ECHELON FORMS Rectangular systems General linear system a 11 x 1 + a 12 x 2 + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 2 n x n = b 2 . . . a m 1 x 1 + a m 2 x 2 +


  1. Álgebra Linear e Aplicações

  2. RECTANGULAR SYSTEMS AND ECHELON FORMS

  3. Rectangular systems • General linear system a 11 x 1 + a 12 x 2 + · · · a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + · · · a 2 n x n = b 2 . . . a m 1 x 1 + a m 2 x 2 + · · · a mn x n = b m • What happens to elimination when m ≠ n ?

  4. More on matrix notation • Matrix of size m × n m = n : square matrix m � n : rectangular matrix   a 11 a 12 a 1 n · · · a 21 a 22 a 2 n · · ·   A =  = [ a ij ] m × n  . . .  ... . . .   . . .  a m 1 a m 2 a mn · · · � a i 1 � A i ∗ = row vector a i 2 a in · · ·   a 1 j a 2 j   A ∗ j = column vector   .   . .   a mj

  5. Gaussian Elimination example • Consider the system     1 1 2 2 1 1 3 3 3 3 0 0 0 0 − 2 − 2 − 2 − 2 − 2 − 2     x 1 + 2 x 2 + x 3 + 3 x 4 + 3 x 5 = 5     0 0 0 0 2 2 2 2 2 2     2 x 1 + 4 x 2 + 4 x 4 + 4 x 5 = 6 0 0 0 0 − 2 − 2 − 2 − 2 1 1 x 1 + 2 x 2 + 3 x 3 + 5 x 4 + 5 x 5 = 9 2 x 1 + 4 x 2 + 4 x 4 + 7 x 5 = 9   1 2 1 3 3 0 0 − 2 − 2 − 2   • Gaussian Elimination   0 0 0 0 0   0 0 0 0 3     1 2 1 3 3 1 2 1 3 3 2 4 0 4 4 0 0 − 2 − 2 − 2         1 2 3 5 5 0 0 0 0 3     2 4 0 4 7 0 0 0 0 0

  6. Modified Gaussian Elimination • Look for a column that • Stop if all rows below has a viable pivot last pivot are zero       ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 s s s s s s s ∗ ∗ ∗             0 0 0 0 0 0 0 s s s s s s s ∗       0 0 0 0 0 0 0 0 s s s s s s s • If needed, exchange rows to move pivot up     ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 s s ∗ s s         0 0 0 0 0 ∗ s s s s     0 0 0 0 s s s s s s

  7. Row Echelon Form   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗     0 0 0 ∗ ∗ ∗ ∗ ∗     0 0 0 0 0 0 ∗ ∗     0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 • Two conditions • All rows below a zero-row are also zero • All elements below or left of pivots are zero • Elements not unique, but form is unique!

  8. Rank of a Matrix • Let A have row echelon form E • rank ( A ) = number of pivots • rank ( A ) = number of non-zero rows in E • rank ( A ) = number of basic columns in A • Basic column is a column at a pivotal position   1 2   A ∗ 1 =     1 2 1 3 3 1 2 1 3 3   1   2 4 0 4 4 0 0 − 2 − 2 − 2     2 A =  E =     1 2 3 5 5 0 0 0 0 3        1 3 2 4 0 4 7 0 0 0 0 0 0 4     A ∗ 3 = A ∗ 5 =     3 5     0 7

  9. Modified Gauss-Jordan example • Back to our system     1 2 1 3 3 1 2 0 2 2 0 0 − 2 − 2 − 2 0 0 1 1 1         0 0 0 0 3 0 0 0 0 1     0 0 0 0 0 0 0 0 0 0   1 2 1 3 3   1 2 0 2 0 0 0 1 1 1 0 0 1 1 0       0 0 0 0 3   0 0 0 0 1     0 0 0 0 0 0 0 0 0 0   1 2 0 2 2 0 0 1 1 1     0 0 0 0 3   0 0 0 0 0

  10. Reduced Row Echelon Form • Echelon form is result of Gaussian Elimination • Gauss-Jordan leads to reduced row echelon form   1 0 0 0 ∗ ∗ ∗ ∗ 0 0 1 0 0 ∗ ∗ ∗     0 0 0 1 0 ∗ ∗ ∗     0 0 0 0 0 0 1 ∗     0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0 • Notation: E A is reduced row echelon form of A • Reduced form is unique (proof later on) • Useful for theoretical results

  11. Why basic columns are basic • Non-basic columns are combinations of basic columns, as made obvious by reduced form   1 2 0 2 0 E ∗ 2 = 2 E ∗ 1 0 0 1 1 0   E A =   0 0 0 0 1 E ∗ 4 = 2 E ∗ 1 + E ∗ 3   0 0 0 0 0 • Row operations preserve column relationships   1 2 1 3 3 2 4 0 4 4 A ∗ 2 = 2 A ∗ 1   A =   1 2 3 5 5   A ∗ 4 = 2 A ∗ 1 + A ∗ 3 2 4 0 4 7

  12. Column relationships in A and E A         1 0 0 µ 1 0 1 0 µ 2                 . . . . . . . .         . . . .         E ∗ k = = µ 1 + µ 2 + · · · + µ j         0 0 1 µ j                 . . . . . . . .         . . . .         0 0 0 0 = µ 1 E ∗ b 1 + µ 2 E ∗ b 2 + · · · + µ j E ∗ b j are the basic columns to the left of E * k • E ∗ b i • Same relationships hold for and A * k A ∗ b i A ∗ k = µ 1 A ∗ b 1 + µ 2 A ∗ b 2 + · · · + µ j A ∗ b j • Why?

  13. SOLVING RECTANGULAR SYSTEMS

  14. Consistency • Rectangular system is consistent if it has at least one solution • It is inconsistent if it has no solution Consistent system Inconsistent system

  15. Using Gaussian elimination instead • Reduce [ A | b ] to [ E | c ] in row echelon form   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗     0 0 0 ∗ ∗ ∗ ∗ ∗ ∗     0 0 0 0 0 0 ∗ ∗ ∗     0 0 0 0 0 0 0 0 α    . . . . . . . . .  . . . . . . . . . . . . . . . . . . • If , we have a problem α 6 = 0 0 x 1 + 0 x 2 + · · · + 0 x n = α • Otherwise, back-substitution works!

  16. Equivalent consistency criteria • When row reducing [ A | b ], a row of the following form never appears � 0 α � α 6 = 0 0 0 · · · • b is a combination of the basic columns in A • rank [ A | b ] = rank ( A )

  17. Homogeneous systems • An homogeneous system is of the form a 11 x 1 + a 12 x 2 + · · · a 1 n x n = 0 a 21 x 1 + a 22 x 2 + · · · a 2 n x n = 0 . . . a m 1 x 1 + a m 2 x 2 + · · · a mn x n = 0 • Can it be inconsistent ? • Values of ? α 6 = 0 • Trivial solution! x 1 = x 2 = · · · = x m = 0

  18. Homogeneous system example • Consider the system • Equivalent to x 1 + 2 x 2 + 2 x 3 + 3 x 4 = 0 x 1 + 2 x 2 + 2 x 3 + 3 x 4 = 0 2 x 1 + 4 x 2 + x 3 + 3 x 4 = 0 − 3 x 3 − 3 x 4 = 0 3 x 1 + 6 x 2 + x 3 + 4 x 4 = 0 • 4 unknowns and only • In row echelon form 2 equations! • Pick basic variables     1 2 2 3 1 2 2 3 2 4 1 3 0 0 − 3 − 3 • pivotal positions     3 6 1 4 0 0 − 5 − 5 • as functions of free variables   1 2 2 3 0 0 − 3 − 3 x 3 = − x 4   0 0 0 0 x 1 = − 2 x 2 − 2 x 3 − 3 x 4 = − 2 x 2 − x 4

  19. Representating the general solution • Pick any values for x 2 and x 4 , and you create a new solution to the system x 1 = − 2 x 2 − x 4         − 2 x 2 − x 4 − 2 − 1 x 1 x 2 = x 2 1 0 x 2 x 2          =  = x 2  + x 4         0 − 1 x 3 − x 4 x 3 = − x 4      0 1 x 4 x 4 x 4 = x 4 • Every solution is a combination of two particular solutions     − 2 − 1 1 0     h 1 = h 2 =     0 − 1     0 1

  20. General homogeneous system • Consider an m × n system [ A | 0 ] • How many basic variables? • r = rank ( A ) • How many free variables? • n – r • General form of solution is x = x f 1 h 1 + x f 2 h 2 + · · · + x f n − r h n − r

  21. Unicity of homogeneous solution • Consistency has already been shown • Trivial solution x 1 = x 2 = · · · = x m = 0 • Look at general solution x = x f 1 h 1 + x f 2 h 2 + · · · + x f n − r h n − r • When is it unique? • When there are no free variables • When n - r = 0 • i.e., when rank ( A ) = n

  22. Nonhomogeneous systems • A system is non-homogeneous a 11 x 1 + a 12 x 2 + · · · a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + · · · a 2 n x n = b 2 . . . a m 1 x 1 + a m 2 x 2 + · · · a mn x n = b m • whenever for at least one i b i 6 = 0 • Solution follows the same procedure as the homogeneous case

  23. Solving nonhomogeneous systems • Start with [ A | b ] and reduce to [ E | c ] • Identify the basic and free variables • Apply back-substitution to solve for basic variables as function of free variables • Write the result in the form x = p + x f 1 h 1 + x f 2 h 2 + · · · + x f n − r h n − r • The only difference is the term p that was not needed in the homogeneous case

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend