lgebra linear e aplica es linear equations start with a
play

lgebra Linear e Aplicaes LINEAR EQUATIONS Start with a few examples - PowerPoint PPT Presentation

lgebra Linear e Aplicaes LINEAR EQUATIONS Start with a few examples One way of designing a reconstruction kernel Cubic B-Spline Leads to linear equations Two ways of computing the sums of squares Both lead to linear


  1. Álgebra Linear e Aplicações

  2. LINEAR EQUATIONS

  3. Start with a few examples • One way of designing a reconstruction kernel • Cubic B-Spline • Leads to linear equations • Two ways of computing the sums of squares • Both lead to linear equations • One simpler than the other

  4. Desirable properties • A smooth, piecewise polynomial function Q 3 ( − x ) P 3 ( − x ) P 3 ( x ) Q 3 ( x ) -2 -1 0 1 2 P 3 ( x ) = ax 3 + bx 2 + cx + d Q 3 ( x ) = ex 3 + fx 2 + gx + h P 0 3 (0) = 0 Q 3 (2) = 0 P 3 (1) = Q 3 (1) Z 1 Z 2 Q 3 ( x ) d x = 1 P 0 3 (1) = Q 0 Q 0 3 (2) = 0 3 (1) P 3 ( x ) d x + Q 00 3 (2) = 0 P 00 3 (1) = Q 00 3 (1) 2 0 1

  5. Resulting linear equations • Substituting, we get the linear system c = 0 8 e + 4 f + 2 g + h = 0 12 e + 4 f + g = 0 12 e + 2 f = 0 a + b + c + d − e − f − g − h = 0 3 a + 2 b + c − 3 e − 2 f − g = 0 6 a + 2 b − 6 e − 2 f = 0 1 4 a + 1 3 b + 1 2 c + d + 15 4 e + 7 3 f + 3 2 g + h = 1 2

  6. Result: the Cubic B-Spline function • Solving, we get P 3 ( x ) = x 3 / 2 − x 2 + 2 / 3 Q 3 ( x ) = − x 3 / 6 + x 2 − 2 x + 4 / 3 Q 3 ( − x ) P 3 ( − x ) P 3 ( x ) Q 3 ( x ) -2 -1 0 1 2

  7. Sum of squares • Find a formula for the sum of squares n X i 2 S 2 ( n ) = i =1 • Seems to be a cubic polynomial P 2 ( n ) = a n 3 + b n 2 + c n + d • Use first 4 results to solve for a , b , c , and d P 2 (0) = d = 0 = S 2 (0) P 2 (1) = a + b + c + d = 1 = S 2 (1) P 2 (2) = 8 a + 4 b + 2 c + d = 5 = S 2 (2) P 2 (3) = 27 a + 9 b + 3 c + d = 14 = S 2 (3)

  8. Even simpler! • On one hand S 2 ( n + 1) − S 2 ( n ) = ( n + 1) 2 = n 2 + 2 n + 1 • On the other hand P 2 ( n + 1) − P 2 ( n ) = 3 a n 2 + (3 a + 2 b ) n + a + b + c • Equating coefficient by coefficient 3 a = 1 3 a + 2 b = 2 P 2 ( n ) = n ( n + 1)(2 n + 1) a + b + c = 1 6 d = 0

  9. Generalizing • Formulate general problem • Propose a solution strategy • Elimination • Back-substitution • Propose a convenient notation • Investigate the cost of solution

  10. Systems of linear equations • General problem formulation a 11 x 1 + a 12 x 2 + · · · a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + · · · a 2 n x n = b 2 . . . a m 1 x 1 + a m 2 x 2 + · · · a mn x n = b m • a ij are the coefficients • b i is the right-hand side • x i are the variables or unknowns • m equations on n unknowns

  11. Solutions to linear equations • There are only three possibilities • System has unique solution • System has no solution • System has infinitely many solutions • Easy to understand geometrically

  12. The row-view of linear systems • Imagine m = 2 and n = 2 • Each equation represents a line in R 2 a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 • Planes in 3D, hyper-planes in higher dimensions

  13. How to solve a linear system? • Transform to an equivalent system • Same solution set • Easier to solve • Method known as Gaussian Elimination 2 x + y + z = 1 2 x + y + z = 1 6 x + 2 y + z = − 1 − y − 2 z = − 4 − 2 x + 2 y + z = 7 − 4 z = − 4

  14. Elementary operations • Consider the following row operations: • Exchange two rows • Multiply a row by a non-zero constant • Add a multiple of a row into another • Can these operations change the solution set? • Are these operations reversible?

  15. Elimination step-by-step • Let each row i be denoted by E i • Use E i to eliminate variable i from E i +1 to E n 2 x + y + z = 1 2 x + y + z = 1 6 x + 2 y + z = − 1 − 1 y − 2 z = − 4 − 2 x + 2 y + z = 7 3 y + 2 z = 8 2 x + y + z = 1 2 x + y + z = 1 y − 2 z = − 4 ( E 2 − 3 E 1 ) − 1 y − 2 z = − 4 − − 4 z = − 4 ( E 3 + 3 E 2 ) − 2 x + 2 y + z = 7 2 x + y + z = 1 2 x + y + z = 1 y − 2 z = − 4 − y − 2 z = − 4 − 3 y + 2 z = 8 ( E 3 + E 1 ) − 4 z = − 4

  16. Back substitution • Start from triangularized system 2 x + y + z = 1 − y − 2 z = − 4 − 4 z = − 4 • Solve for z in E 3 z = 1 • Solve for y in E 2 y = 4 − 2 z = 4 − 2(1) = 2 • Solve for x in E 1 x = 1 2(1 − y − z ) = 1 2(1 − 2 − 1) = − 1

  17. Simplifying notation • Variable names and operators are redundant   2 1 1 1 2 x + y + z = 1 6 2 1 − 1 6 x + 2 y + z = − 1   − 2 2 1 7 − 2 x + 2 y + z = 7 • Coefficient matrix A and right-hand side b • Augmented matrix [ A | b ] • A matrix is a rectangular array of scalars • A scalar is a real or complex number

  18. Elimination on augmented matrix 2 x + y + z = 1   2 1 1 1 6 x + 2 y + z = − 1 6 2 1 − 1   − 2 x + 2 y + z = 7 − 2 2 1 7   2 1 1 1  R 2 − 3 R 1 0 − 1 − 2 − 4  R 3 + R 1 0 3 2 8   2 1 1 1 2 x + y + z = 1 0 − 1 − 2 − 4 − y − 2 z = − 4   0 0 − 4 − 4 R 3 + 3 R 2 − 4 z = − 4

  19. Back-substitution on augmented matrix     R 1 − R 2 2 1 1 1 2 0 0 − 2 0 − 1 − 2 − 4 0 1 0 2     R 3 / ( − 4) 0 0 1 1 0 0 1 1     R 1 / 2 2 1 0 0 R 1 − R 3 1 0 0 − 1 0 − 1 0 − 2 R 2 + 2 R 3 0 1 0 2     0 0 1 1 0 0 1 1   = − 1 2 1 0 0 x R 2 / ( − 1) = 2 0 1 0 2 y   z = 1 0 0 1 1

  20. Origins of method • Chinese book Chiu-chang Suan-shu • Nine chapters on arithmetic • From around 200 B.C. • Using a “counting board” • Row manipulations • Made its way to Japan then Europe • Gauss was a user of method, not inventor

  21. How much computation? • Assume an n × n system of equations • Count number of additions/subtractions • Count number of multiplications/divisions • The elimination step is     a 11 a 12 a 1 n b 1 t 11 t 12 t 1 n c 1 · · · · · · a 21 a 22 a 2 n b 2 0 t 22 t 2 n c 2 · · · · · ·         . . . . ... . . . .  . . . .    ... . . . . . . . .     . . . . a n 1 a n 2 a nn b n 0 0 t nn c n · · · · · ·

  22. Operation count of elimination step Elimination Pivot Multiplication & Addition & Division Subtraction (n-1) ( 1+(n-1)+1 ) (n-1) ( (n-1)+1 ) 1 (n-2) ( 1+(n-2)+1 ) (n-2) ( (n-2)+1 ) 2 … … … 1 ( 1+(1)+1 ) 1 ( (1)+1 ) n-1 n − 1 n − 1 X X i ( i + 2) i ( i + 1) i =1 i =1

  23. How much computation? • The back-substitution step is     1 0 0 t 11 t 12 t 1 n c 1 s 1 · · · · · · 0 0 1 0 t 22 t 2 n c 2 s 2 · · · · · ·         . . . . . . . . ... ... . . . . . . . .     . . . . . . . .     0 0 0 0 1 t nn c n s n · · · · · · • And the solution is given by     x 1 s 1 x 2 s 2          = . .     . . . .    x n s n

  24. Operation count of back-substitution Elimination Back-substitution Pivot Multiplication & Addition & Multiplication & Addition & Division Subtraction Division Subtraction (n-1) ( 1+(n-1)+1 ) (n-1) ( (n-1)+1 ) 1 1+(0) 0 (n-2) ( 1+(n-2)+1 ) (n-2) ( (n-2)+1 ) 2 1+(1) 1 … … … … … 1 ( 1+(1)+1 ) 1 ( (1)+1 ) n-1 1+(n-1) n-1 n n − 1 n − 1 n − 1 X X X X i ( i + 2) i ( i + 1) i i i =1 i =1 i =1 i =1

  25. Total operation count of Gaussian Elimination • Number of multiplication and divisions n 3 3 + n 2 − n 3 • Number of additions and subtractions n 3 3 + n 2 2 − 5 n 6 n 3 • So about of each operation ( n is large!) 3

  26. Gauss-Jordan method • Try to avoid back-substitution • Modify Gaussian Elimination • Scale E i so pivot is 1 • Annihilate all terms above pivot as well • Intermediate state would look like   c 13 c 1 n d 1 1 0 · · · c 23 c 2 n d 2 0 1 · · ·     0 0 c 33 c 3 n d 3 · · ·     . . . . . ... . . . . .   . . . . .   c n 3 c nn d n 0 0 · · ·

  27. Total operation count of Gaussian-Jordan method • Number of multiplication and divisions n 3 2 + n 2 2 • Number of additions and subtractions n 3 2 − n 2 2 n 3 • So about of each operation 2 • Worse than Gaussian Elimination! Why?

  28. Why do we care about cost? • Are there large linear systems? • Yes, very large systems • Look at two examples • Signal reconstruction • With our Cubic B-Spline! • Two-point boundary problem • Solve ODE numerically through discretization

  29. Signal reconstruction • Assume you have sampled a function f at a range of integer positions � f (0) , f (1) , f (2) , . . . • Now you want to reconstruct the value of the function at all reals in a finite range • Use a compactly supported generating function and define ϕ ( x ) ˜ X f ( x ) = f ( i ) ϕ ( x − i ) i

  30. Generating functions • Typical generating functions 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 nearest/box linear/tent cubic B-Spline • Typical reconstructions 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend