yangian symmetry of fishnet graphs
play

Yangian symmetry of fishnet graphs Dmitry Chicherin JGU, Mainz, - PowerPoint PPT Presentation

Yangian symmetry of fishnet graphs Dmitry Chicherin JGU, Mainz, Germany IGST, 19 July 2017, Paris Based on work arXiv:1704.01967 and 1708.xxxxx in collaboration with V. Kazakov, F. Loebbert, D. M uller, D. Zhong Overview Planar


  1. Yangian symmetry of fishnet graphs Dmitry Chicherin JGU, Mainz, Germany IGST, 19 July 2017, Paris Based on work arXiv:1704.01967 and 1708.xxxxx in collaboration with V. Kazakov, F. Loebbert, D. M¨ uller, D. Zhong

  2. Overview • Planar multi-loop multi-point massless conformal Feynman graphs e.g. Fishnet in 4D [Zamolodchikov ’80] • Yangian symmetry Integrability • Higher order symmetry (extends conformal symmetry) • Set of differential equations • Integrability of the underlying theory • Analytical approach (Bethe ansatz, TBA, QSC, . . . ) and Operator approach (Baxter Q-operators, transfer matrices, separation of variables) to integrability talk by Korchemsky [Gromov, Kazakov, Korchemsky, Negro, Sizov ’17] • 4D biscalar theory (limit of N = 4 SYM) square fishnet lattice • Single-trace correlators (off-shell legs) • Amplitudes (on-shell legs) Yangian symmetry • Cuts (mixed on-shell/off-shell) • Yangian symmetry is NOT broken by loop corrections (at least for correlators) • Generalization: 3D, 6D scalar theory, 4D scalars & fermions

  3. • QFT generating Fishnet graphs (square lattice) • 4D biscalar theory. Complex scalars φ 1 , φ 2 in adj of SU ( N c ) � � L = N c 2 ∂ µ φ 2 + 2 ξ 2 φ † ∂ µ φ † 1 ∂ µ φ 1 + ∂ µ φ † 1 φ † 2 Tr 2 φ 1 φ 2 [Gurdogan, Kazakov ’15] • Double scaling limit of γ -deformed N = 4 SYM d log µ = O ( N − 2 d ξ • ”Almost” conformal in the planar limit. c ) • Integrability (spectrum of anomalous dimensions) [Caetano, Gurdogan, Kazakov ’16] talk by Caetano • Non-unitary. Chiral structure φ † 1 φ † φ 2 2 φ 1 • One Feynman graph per loop order in the planar limit

  4. Fishnet graphs with regular boundary Single-trace correlator � Tr [ χ 1 ( x 1 ) χ 2 ( x 2 ) , . . . χ 2 M ( x 2 M )] � where χ i ∈ { φ † 1 , φ † 2 , φ 1 , φ 2 } Duality transformation p µ i = x µ i − x µ i +1 x -space – correlator graph p -space – loop graph with off-shell legs

  5. Yangian of conformal algebra Conformal algebra so (2 , 4) D = − i ( x µ ∂ µ + ∆) L µν = i ( x µ ∂ ν − x ν ∂ µ ) , , K µ = i ( x 2 ∂ µ − 2 x µ x ν ∂ ν − 2∆ x µ ) P µ = − i ∂ µ , and its infinite-dimensional extension – Yangian [Drinfeld ’85] J , � J , [ � J , � J ] , [ � J , [ � J , � J ]] , [[ � J , � J ] , [ � J , � J ]] . . . where level-zero generators J A ∈ so (2 , 4) and level-one generators � J satisfy � J A , J B � � J B � Jacobi and Serre C J C , J C , J A , � C � = f AB = f AB relations – cubic in J , � J Evaluation representation with evaluation parameters v k � � J A = 1 � 2 f A J C j J B v k J A k + BC k j < k k Yangian symmetry of the Fishnet graphs J A | Fishnet � = � J A | Fishnet � = 0

  6. Yangian of conformal algebra Conformal algebra so (2 , 4) D = − i ( x µ ∂ µ + ∆) L µν = i ( x µ ∂ ν − x ν ∂ µ ) , , K µ = i ( x 2 ∂ µ − 2 x µ x ν ∂ ν − 2∆ x µ ) P µ = − i ∂ µ , and its infinite-dimensional extension – Yangian [Drinfeld ’85] J , � J , [ � J , � J ] , [ � J , [ � J , � J ]] , [[ � J , � J ] , [ � J , � J ]] . . . where level-zero generators J A ∈ so (2 , 4) and level-one generators � J satisfy � J A , J B � � J B � Jacobi and Serre C J C , J C , J A , � C � = f AB = f AB relations – cubic in J , � J Evaluation representation with evaluation parameters v k � � � � P µ = − i � ( L µν + η µν D j ) P k ,ν − ( j ↔ k ) v k P µ + j 2 k j < k k Yangian symmetry of the Fishnet graphs J A | Fishnet � = � J A | Fishnet � = 0

  7. Lax and monodomry matrix • Lax matrix with the spectral parameter u   1 + 1 1 1 1 u J 11 u J 12 u J 13 u J 14    1 1 + 1 1 1  u J 21 u J 22 u J 23 u J 24   L ( u ) =     1 1 1 + 1 1 u J 31 u J 32 u J 33 u J 34   1 1 1 1 + 1 u J 41 u J 42 u J 43 u J 44 consists of so (2 , 4) generators J ij ∈ span { D , P µ , K ν , L µν } • n-point monodromy matrix with inhomogeneities δ 1 , δ 2 , . . . , δ n T ( u ; � δ ) = L n ( u + δ n ) . . . L 2 ( u + δ 2 ) L 1 ( u + δ 1 ) � u − 1 − k J ( k ) T ab ( u ; � δ ) = δ ab + ab k ≥ 0 Quantum spin chain with noncompact representations of so (2 , 4)

  8. Lax and monodomry matrix RTT-relation defines the quadratic algebra for {J ( k ) } R ae , bf ( u − v ) T ec ( u ) T fd ( v ) = T ae ( v ) T bf ( u ) R ec , fd ( u − v ) [Faddeev, Kulish, Sklyanin, Takhtajan,...’79] with Yang’s R-matrix R ab , cd ( u ) = δ ab δ cd + u δ ad δ bc . RTT is compatible with the co-product. Eigenvalue relation for Yangian symmetry the monodromy matrix L n ( u + δ n ) . . . L 2 ( u + δ 2 ) L 1 ( u + δ 1 ) | Fishnet � = λ ( u ; � δ ) | Fishnet � · 1 and expanding this matrix equation in the spectral parameter u , J ( k ) ab | Fishnet � = λ n ( � δ ) δ ab | Fishnet � For Jordan-Schwinger representations and scattering amplitudes in N = 4 SYM [D.C., Kirschner ’13; D.C., Kirschner, Derkachov ’13] 6-vertex model [Frassek, Kanning, Ko, Staudacher ’13] , On-shell amplitude graphs [Kanning, Lukowski, Staudacher ’14; Broedel, de Leeuw, Rosso ’14] , scattering amplitudes in ABJM [Bargheer, Huang, Loebbert, Yamazaki ’14] , form factors of composite operators [Bork, Onishchenko ’15; Frassek, Meidinger, Nandan, Wilhelm ’15] , form factors of Wilson lines [Bork, Onishchenko ’16] , amplituhedron volume [Ferro, Lukowski, Orta, Parisi ’16] , QCD parton evolution kernels [Fuksa, Kirschner ’16] , splitting amplitudes [Kirschner, Savvidy ’17]

  9. Conformal Lax Lax matrix depends on parameters ( u , ∆) ⇔ ( u + , u − ) � � u + · 1 − p · x p L ( u + , u − ) = − x · p · x + ( u + − u − ) · x u − · 1 + x · p where [D.C., Derkachov, Isaev ’12] x = − i σ µ x µ , p = − i 2 σ µ ∂ µ , u + = u + ∆ − 4 , u − = u − ∆ 2 2 • Local vacuum of the Lax L ( u , u + 2) · 1 = ( u + 2) · 1 • Intertwining relation with the scalar propagator x i , j ≡ x i − x j x 2 x 2 L 2 ( • , u + 1) L 2 ( • , u + 1) L 1 ( u + 1 , ∗ ) L 2 ( • , u ) x − 2 12 = = x − 2 12 L 1 ( u , ∗ ) L 2 ( • , u + 1) L 1 ( u , ∗ ) L 1 ( u , ∗ ) x 1 x 1 • Integration by parts ∼ L ( u + 2 , u ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1

  10. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j )

  11. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1 ,

  12. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1 L ( u , u + 2) · 1 = ( u + 2) · 1 , x − 2 12 L 1 ( u , ∗ ) L 2 ( • , u + 1) = L 1 ( u + 1 , ∗ ) L 2 ( • , u ) x − 2 12

  13. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1 L ( u , u + 2) · 1 = ( u + 2) · 1 , x − 2 12 L 1 ( u , ∗ ) L 2 ( • , u + 1) = L 1 ( u + 1 , ∗ ) L 2 ( • , u ) x − 2 12

  14. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1 L ( u , u + 2) · 1 = ( u + 2) · 1 , x − 2 12 L 1 ( u , ∗ ) L 2 ( • , u + 1) = L 1 ( u + 1 , ∗ ) L 2 ( • , u ) x − 2 12

  15. Example: Cross integral [ i , j ] ≡ L ( u + i , u + j ) L T ( u + 2 , u ) · 1 = ( u + 2) · 1 L ( u , u + 2) · 1 = ( u + 2) · 1 , x − 2 12 L 1 ( u , ∗ ) L 2 ( • , u + 1) = L 1 ( u + 1 , ∗ ) L 2 ( • , u ) x − 2 12

  16. Example: Cross integral Yangian symmetry of the cross integral L 4 [4 , 5] L 3 [3 , 4] L 2 [2 , 3] L 1 [1 , 2] | cross � = [3][4] 2 [5] · | cross � · 1 where [ i , j ] ≡ L ( u + i , u + j ) and [ i ] ≡ u + i � 1 d 4 x 0 = x − 2 13 x − 2 | cross � = 24 Φ( s , t ) x 2 10 x 2 20 x 2 30 x 2 40 Conformal cross-ratios s , t . The Yangian symmetry implies DE ∂ t + ( s − 1) s ∂ 2 Φ ∂ s 2 + t 2 ∂ 2 Φ ∂ t 2 + 2 st ∂ 2 Φ Φ + (3 s − 1) ∂ Φ ∂ s + 3 t ∂ Φ ∂ s ∂ t = 0

  17. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  18. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  19. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  20. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  21. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  22. Example: Double Cross integral [ i , j ] ≡ L ( u + i , u + j )

  23. Fishnet graphs with regular boundary �� � � � � L i [ δ + i , δ − [ δ + i ][ δ − i ] | Fishnet � = i ] | Fishnet � · 1 i ∈C i ∈C out where C = C in ∪ C out is the boundary of the graph

  24. Fishnet graphs with regular boundary �� � � � � L i [ δ + i , δ − [ δ + i ][ δ − i ] | Fishnet � = i ] | Fishnet � · 1 i ∈C i ∈C out where C = C in ∪ C out is the boundary of the graph

  25. Fishnet graphs with irregular boundary Single-trace correlator � Tr [ χ 1 ( x 1 ) χ 2 ( x 2 ) , . . . χ 2 M ( x 2 M )] � where χ i ∈ { φ † 1 , φ † 2 , φ 1 , φ 2 } and some of x i ’s are identified. Composite operators and Lagrangian have the same chiral structure UV finite

  26. Fishnet graphs with irregular boundary �� � L i [ δ + i , δ − | Fishnet � = λ ( u ; � i ] δ ) | Fishnet � · 1 i ∈C

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend