❖♥ t❤❡ tr❛♥s♣♦rt ♦❢ ✜♥✐t❡♥❡ss str✉❝t✉r❡s ▲✐♦♥❡❧ ❱❛✉①✱ ♠❛✐♥❧② ❜❛s❡❞ ♦♥ ❥♦✐♥t ✇♦r❦ ✇✐t❤ ❈❤r✐st✐♥❡ ❚❛ss♦♥ ■♥st✐t✉t ❞❡ ▼❛t❤é♠❛t✐q✉❡s ❞❡ ▲✉♠✐♥②✱ ▼❛rs❡✐❧❧❡✱ ❋r❛♥❝❡ ❚❆❈▲ ✷✵✶✶✱ ▼❛rs❡✐❧❧❡ ❏✉❧② ✷✻✲✸✵ ✷✵✶✶
❙❡ts ❛♥❞ r❡❧❛t✐♦♥s ❉❡✜♥✐t✐♦♥ ❚❤❡ ❝❛t❡❣♦r② Rel ♦❢ s❡ts ❛♥❞ r❡❧❛t✐♦♥s ❤❛s s❡ts ❛s ♦❜❥❡❝ts ❛♥❞ r❡❧❛t✐♦♥s ❛s ♠♦r♣❤✐s♠s✿ f ∈ Rel ( A, B ) ⇐ ⇒ f ⊆ A × B ✳ ❘❡❧❛t✐♦♥❛❧ ❝♦♠♣♦s✐t✐♦♥ ✐s ❣✐✈❡♥ ❜②✿ ( α, γ ) ∈ g ◦ f ⇐ ⇒ ∃ β, ( α, β ) ∈ f ∧ ( β, γ ) ∈ g. Rel ❛s ❛ ♠♦❞❡❧ ♦❢ ❧✐♥❡❛r ❧♦❣✐❝ ◮ ❝♦♠♣❛❝t ❝❧♦s❡❞✿ ⊗ = × ❛♥❞ f ⊥ = t f ❀ ◮ ❝❛rt❡s✐❛♥ ❛♥❞ ❝♦❝❛rt❡s✐❛♥✿ � ✐s ❛ ❜✐♣r♦❞✉❝t❀ ◮ ❡①♣♦♥❡♥t✐❛❧ str✉❝t✉r❡✿ ❣✐✈❡♥ ❜② t❤❡ ❝♦♠♦♥❛❞ ! = M f ✳
✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥ ▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1
❆ ❦❡② ✐♥t✉✐t✐♦♥ ▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳
▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥
▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥
▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥
▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥
▼♦r♣❤✐s♠s ✐♥ ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥
❚❤❡ r❡❧❛t✐♦♥❛❧ ♠♦❞❡❧ ♦❢ t❤❡ λ ✲❝❛❧❝✉❧✉s ❆♣♣❧② t❤❡ ❝♦✲❑❧✐❡s❧✐ ❝♦♥str✉❝t✐♦♥ Rel ! ( A, B ) = Rel (! A, B ) ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥ ❣✐✈❡♥ ❜②✿ �� n � � g ◦ ! f = � ; ∃ ([ β 1 , . . . , β n ] , γ ) ∈ g ∧ ∀ i, ( α i , β i ) ∈ f α i , γ i =1 Rel ! ✐s ❝❛rt❡s✐❛♥ ❝❧♦s❡❞ ✇✐t❤ ♣r♦❞✉❝t ⊎ ✳ ▼♦r❡♦✈❡r ✐t ✐s ❝♣♦✲❡♥r✐❝❤❡❞ ✭❢♦r s❡t ✐♥❝❧✉s✐♦♥✮✳ ❆ ❦❡② ✐♥t✉✐t✐♦♥ ▼♦r♣❤✐s♠s ✐♥ Rel ! ❛r❡ t❤❡ s✉♣♣♦rt ♦❢ ♣♦✇❡r s❡r✐❡s✳
❲❡ ♥❡❡❞ s♦♠❡ ♥♦t✐♦♥ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✦ ❙✉❝❤ ✐♥t✉✐t✐♦♥s ✇❡r❡ ❛t t❤❡ ❝♦r❡ ♦❢ t❤❡ ✐♥✈❡♥t✐♦♥ ♦❢ ❧✐♥❡❛r ❧♦❣✐❝✳ ❋✐♥✐t❡♥❡ss s♣❛❝❡s ✭❊❤r❤❛r❞✱ ✷✵✵✵✬s✮ ■♥ ❛ t②♣❡❞ s❡tt✐♥❣✱ t❤❡ s✉♠ ✐s ❛❧✇❛②s ✜♥✐t❡✳ ▲❡❞ t♦ t❤❡ ✐♥tr♦❞✉❝t✐♦♥ ♦❢ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ✲❝❛❧❝✉❧✉s ✭❊❤r❤❛r❞✕❘❡❣♥✐❡r✱ ✷✵✵✹✮✿ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛s ❛ ♥❛t✉r❛❧ tr❛♥s❢♦r♠❛t✐♦♥ ✳ ◗✉❛♥t✐t❛t✐✈❡ s❡♠❛♥t✐❝s ■❞❡❛ ✭●✐r❛r❞✱ ♣r❡✲▲▲✮ ■♥t❡r♣r❡t ❛ t❡r♠ s ❛s ❛ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥✿ � s � = � α ∈ � s � � s � α α s♦ t❤❛t ❛♣♣❧✐❝❛t✐♦♥ ✐s ❣✐✈❡♥ ❜②✿ � � s � ( α,β ) � t � α � s t � β = ( α,β ) ∈ � s � ✇❤❡r❡ � t � [ α 1 ,...,α k ] = � t � α 1 · · · � t � α k ✳
❙✉❝❤ ✐♥t✉✐t✐♦♥s ✇❡r❡ ❛t t❤❡ ❝♦r❡ ♦❢ t❤❡ ✐♥✈❡♥t✐♦♥ ♦❢ ❧✐♥❡❛r ❧♦❣✐❝✳ ❋✐♥✐t❡♥❡ss s♣❛❝❡s ✭❊❤r❤❛r❞✱ ✷✵✵✵✬s✮ ■♥ ❛ t②♣❡❞ s❡tt✐♥❣✱ t❤❡ s✉♠ ✐s ❛❧✇❛②s ✜♥✐t❡✳ ▲❡❞ t♦ t❤❡ ✐♥tr♦❞✉❝t✐♦♥ ♦❢ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ✲❝❛❧❝✉❧✉s ✭❊❤r❤❛r❞✕❘❡❣♥✐❡r✱ ✷✵✵✹✮✿ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛s ❛ ♥❛t✉r❛❧ tr❛♥s❢♦r♠❛t✐♦♥ ✳ ◗✉❛♥t✐t❛t✐✈❡ s❡♠❛♥t✐❝s ■❞❡❛ ✭●✐r❛r❞✱ ♣r❡✲▲▲✮ ■♥t❡r♣r❡t ❛ t❡r♠ s ❛s ❛ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥✿ � s � = � α ∈ � s � � s � α α s♦ t❤❛t ❛♣♣❧✐❝❛t✐♦♥ ✐s ❣✐✈❡♥ ❜②✿ � � s � ( α,β ) � t � α � s t � β = ( α,β ) ∈ � s � ✇❤❡r❡ � t � [ α 1 ,...,α k ] = � t � α 1 · · · � t � α k ✳ ❲❡ ♥❡❡❞ s♦♠❡ ♥♦t✐♦♥ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✦
Recommend
More recommend