reducing nonlinear state space models through polynomial
play

Reducing nonlinear state-space models through polynomial decoupling - PowerPoint PPT Presentation

Reducing nonlinear state-space models through polynomial decoupling Jan Decuyper, Koen Tiels, Johan Schoukens Workshop on Nonlinear System Identification Benchmarks 2019 Motivating example Black-box Reduced model Static nonlinear function


  1. Reducing nonlinear state-space models through polynomial decoupling Jan Decuyper, Koen Tiels, Johan Schoukens Workshop on Nonlinear System Identification Benchmarks 2019

  2. Motivating example Black-box Reduced model Static nonlinear function Static nonlinear function 0.04 0.1 0.02 0.05 0 0 -0.05 -0.02 -0.1 -0.2 -0.2 0 -0.04 0 -0.2 0 0.2 0.2 0.2 0.015 0.01 0.04 0.005 0.02 0 0 -0.005 -0.02 -0.01 0.2 0.2 0 0 -0.015 -0.2 0 0.2 -0.2 -0.2 10 d.o.f 3 d.o.f 2/25

  3. Outline ◮ Polynomial nonlinear state-space: a universal model ◮ Model reduction ◮ Polynomial decoupling from first-order information ◮ Reshaping the nonlinear functions ◮ Benchmark case studies ◮ Conclusions 3/25

  4. Nonlinear state-space: a universal model Discrete-time Polynomial nonlinear state-space (PNLSS) � x ( k + 1) = Ax ( k ) + Bu ( k ) + E ζ ( x ( k ) , u ( k )) (1a) y ( k ) = Cx ( k ) + Du ( k ) + F η ( x ( k ) , u ( k )) (1b) · · · � T e.g. ζ ( x ( k ) , u ( k )) = � x 2 u 2 1 ( k ) x 1 ( k ) x 2 ( k ) x 1 ( k ) u 1 ( k ) 1 ( k ) (2) Nonlinear state-space Block-oriented NARX Volterra 4/25

  5. Nonlinear state-space: a universal model PNLSS Toolbox v1.0 (tutorial on Thursday) x ( k + 1) = Ax ( k ) + Bu ( k ) + E ζ ( x ( k ) , u ( k )) 1. Linear subspace y ( k ) = Cx ( k ) + Du ( k ) + F η ( x ( k ) , u ( k )) identification: A , B , C , D ( E = 0 and F = 0) 2. Nonlinear optimisation Applications: ◮ Duffing oscillator (nonlinear stiffness) ◮ Van der Pol (nonlinear damping) ◮ Bouc-Wen (hysteresis) ◮ Li-Ion battery ◮ unsteady fluid dynamics ◮ . . . 5/25

  6. Nonlinear state-space: a universal model Cons ◮ unphysical states ◮ large number of parameters ◮ little insight into the system ◮ rely on large multivariate polynomials ◮ bad extrapolation behaviour x ( k ) p ( k ) 1 1 x ( k ) n f ( x , u ) u ( k ) 1 p ( k ) n u ( k ) m 6/25

  7. Outline ◮ Polynomial nonlinear state-space: a universal model ◮ Model reduction ◮ Polynomial decoupling from first-order information ◮ Reshaping the nonlinear functions ◮ Benchmark case studies ◮ Conclusions 7/25

  8. Model reduction Polynomial decoupling from first-order information x ( k ) x ( k ) p ( k ) p ( k ) 1 1 g 1 ( z 1 ) 1 1 x ( k ) x ( k ) V T n n f ( x , u ) W u ( k ) u ( k ) 1 1 p ( k ) p ( k ) g r ( z r ) u ( k ) n u ( k ) n m m � � �� x V T f ( x , u ) = Wg (3) u V T g � 1 W x � z 3 � 1 � � � � 1 / 6 � � � x 2 1 / 6 − 1 / 3 1 1 x 2 x 1 z 3 f ( x , u ) = = , z = − 1 1 . (4) x 3 2 0 0 1 x 2 2 z 3 0 1 3 8/25

  9. Model reduction Polynomial decoupling from first-order information � � �� x V T f ( x , u ) = Wg (5) u � � � ��� x g ′ v T V T J ( x , u ) = W diag (6) i i u  ∂ f ( k ) ∂ f ( k ) ∂ f ( k ) ∂ f ( k )  1 1 1 1 · · · · · · ∂ xn , ∂ x 1 ∂ u 1 ∂ um   J ( k ) = . . . . ... ... . . . .   . . . .   ∂ f ( k ) ∂ f ( k ) ∂ f ( k ) ∂ f ( k ) n n n n · · · ∂ xn , · · · ∂ x 1 ∂ u 1 ∂ um f ( x , u ) 9/25

  10. Model reduction Polynomial decoupling from first-order information ◮ three-way tensor J V = W ◮ simultaneous diagionalisation H V = W ◮ canonical polyadic decomposition (CPD) H V = W ◮ sum of r rank-1 terms with h 1 h r r = rank J = + + . . . v 1 w 1 v r w r 10/25

  11. Model reduction Polynomial decoupling from first-order information J = � W , V , H � (7) � � � x g i ( z i ) = h i ( z i ) dz i , z i = v i (8) u x ( k ) p ( k ) 1 g 1 ( z 1 ) 1 x ( k ) � � �� x n V T W V T f ( x , u ) = Wg u ( k ) u 1 p ( k ) g r ( z r ) u ( k ) n m 11/25

  12. Outline ◮ Polynomial nonlinear state-space: a universal model ◮ Model reduction ◮ Polynomial decoupling from first-order information ◮ Reshaping the nonlinear functions ◮ Benchmark case studies ◮ Conclusions 12/25

  13. Model reduction Reshaping the nonlinear functions Reducing the number of branches ◮ exploiting linear dependencies amongst branches ◮ repeated optimisation on model-level x ( k ) x ( k ) p ( k ) p ( k ) 1 1 g 1 ( z 1 ) 1 1 x ( k ) x ( k ) V T v T n n ˜ W ˜ ˜ g (˜ z ) w u ( k ) u ( k ) 1 1 p ( k ) p ( k ) g r ( z r ) u ( k ) n u ( k ) n m m ◮ Balance model accuracy to complexity 13/25

  14. Model reduction Coupled PNLSS model � x ( k + 1) = Ax ( k ) + Bu ( k ) + E ζ ( x ( k ) , u ( k )) (9a) y ( k ) = Cx ( k ) + Du ( k ) + F η ( x ( k ) , u ( k )) (9b) Reduced decoupled PNLSS model  � � x �� V T x ( k + 1) = Ax ( k ) + Bu ( k ) + W x g x (10a)  x u  � � x �� V T y ( k ) = Cx ( k ) + Du ( k ) + W y g y , (10b)   y u 14/25

  15. Outline ◮ Polynomial nonlinear state-space: a universal model ◮ Model reduction ◮ Polynomial decoupling from first-order information ◮ Reshaping the nonlinear functions ◮ Benchmark case studies ◮ Conclusions 15/25

  16. Benchmark case studies The Silverbox Electrical implementation of the forced Duffing oscillator m ¨ y ( t ) + c ˙ y ( t ) + k ( y ( t )) y ( t ) = u ( t ) , (11) k ( y ( t )) = α + β y 2 ( t ) . (12) Training data: 10 realisations of random-phase multisines Validation data: ◮ 1 realisation of random-phase multisines ◮ filtered Gaussian noise with increasing amplitude (arrow) 16/25

  17. Benchmark case studies 3-step idenfitication procedure: 1. Identify a coupled PNLSS model from the data 2. Decouple the multivariate polynomial function 3. Reduce the number of branches in the description 17/25

  18. Benchmark case studies The Silverbox Single branch Validation error 0.01 0.06 0.04 0.008 rel. rms error 0.02 0.006 0 0.004 -0.02 0.002 -0.04 0 -0.06 0 1 2 3 4 5 -0.2 0 0.2 solid: full PNLSS model markers: reduced model blue: realisation red: arrow 18/25

  19. Benchmark case studies The Silverbox Coupled PNLSS  x 2  1 ( k )   x 1 ( k ) x 2 ( k )   x 2 2 ( k )  � �    e 11 e 12 e 13 e 14 e 15 e 16 e 17 x 3  x ( k + 1) = Ax ( k ) + B u ( k ) +  1 ( k )  (13a) e 21 e 22 e 23 e 24 e 25 e 26 e 27  x 2  1 ( k ) x 2 ( k )   x 1 ( k ) x 2 2 ( k )   x 3  2 ( k )    y ( k ) = cx ( k ) + du ( k ) , (13b) Reduced r = 1 model  � �� w 1 θ 1 z 3 ( k ) + θ 2 z 2 ( k ) � x ( k + 1) = Ax ( k ) + B u ( k ) + (14a)  w 2    y ( k ) = cx ( k ) + du ( k ) , (14b) � �  x 1 ( k )  z ( k ) = [ v 1 v 2 ] (14c)  ,  x 2 ( k ) 19/25

  20. Benchmark case studies The Silverbox coupled PNLSS r = 1 Linear state nonlinearity f x degrees 2, 3 degrees 2, 3 - output nonlinearity f y - - - # d.o.f 19 10 5 4 . 5 × 10 − 4 | 0 . 0084 4 . 5 × 10 − 4 | 0 . 0084 e RMSt | rel. e rms val. R 0 . 014 | 0 . 25 2 . 9 × 10 − 4 | 0 . 0054 3 . 3 × 10 − 4 | 0 . 0061 e RMSt | rel. e rms noise arrow 0 . 007 | 0 . 13 Validation arrow Validation realisation 0.3 -40 -50 0.2 -60 0.1 -70 -80 0 -90 -0.1 -100 -110 -0.2 -120 -0.3 -130 -0.4 -140 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180 200 Time (s) Frequency (Hz) Black: output Blue : PNLSS error Red: 1-branch error 20/25

  21. Benchmark case studies The Bouc-Wen system Hysteresis system with dynamic nonlinearity m ¨ y ( t ) + c ˙ y ( t ) + ky ( t ) + f H ( y ( t ) , ˙ y ( t )) = u ( t ) , (15) ˙ f H ( t ) = α ˙ y ( t ) − ( γ | ˙ y ( t ) | f H ( t ) + δ ˙ y ( t ) | f H ( t ) | ) , (16) Training data: random-phase multisine Validation data: realisation a of random-phase multisines and a swept sine 21/25

  22. Benchmark case studies The Bouc-Wen system Validation error r = 4 1000 150 100 400 0.08 300 100 500 50 0.06 200 rel. rms error 50 0 100 0 0 0.04 0 -500 -50 -100 -50 0.02 -1000 -100 -200 -100 0 -1500 -150 -300 -10 0 10 -5 0 5 -4 0 4 -5 0 5 0 1 2 3 4 5 6 7 solid: full PNLSS model markers dotted: reduced model blue: multisine realisation red: sine sweep 22/25

  23. Benchmark case studies The Bouc-Wen system coupled PNLSS r = 4 r = 1 Linear state nonlinearity f x degrees 2,3 degrees 2,3,4,5 degrees 2,3,4,5 - output nonlinearity f y - - - - # d.o.f 97 43 16 7 1 . 9 × 10 − 5 | 0 . 029 2 . 1 × 10 − 5 | 0 . 031 5 . 2 × 10 − 5 | 0 . 079 1 . 6 × 10 − 4 | 0 . 23 e RMSt | rel. e rms val. R 1 . 2 × 10 − 5 | 0 . 017 1 . 3 × 10 − 5 | 0 . 019 3 . 9 × 10 − 5 | 0 . 059 1 . 5 × 10 − 4 | 0 . 22 e RMSt | rel. e rms val. sweep Validation realisation Validation sine sweep -80 -90 -100 -90 -110 -100 -120 -110 -130 -140 -120 -150 -130 -160 -170 -140 -180 -150 -190 -160 -200 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 100 Frequency (Hz) Frequency (Hz) Black: output Blue : PNLSS error Red: 4-branch error 23/25

  24. Outline ◮ Polynomial nonlinear state-space: a universal model ◮ Model reduction ◮ Polynomial decoupling from first-order information ◮ Reshaping the nonlinear functions ◮ Benchmark case studies ◮ Conclusions 24/25

  25. Conclusions ◮ Black box PNLSS models rely on complex multivariate polynomials as generic equations ◮ hard to interpret ◮ require a large number of parameters ◮ 2 model reduction actions 1. decouple the multivariate polynomials from first order information 2. reduce the number of branches ◮ Balance model complexity to accuracy 25/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend