on kauffman polynomial of alternating knot and homfly
play

On Kauffman polynomial of alternating knot and HOMFLY polynomial of - PowerPoint PPT Presentation

On Kauffman polynomial of alternating knot and HOMFLY polynomial of its Whitehead double ( ) II 1/24 Kauffman polynomial The Kauffman polynomial F ( L ) = F ( L ; a, x )


  1. On Kauffman polynomial of alternating knot and HOMFLY polynomial of its Whitehead double 三浦 嵩広 ( 神戸大学大学院 理学研究科 ) 結び目の数理 II 1/24

  2. Kauffman polynomial The Kauffman polynomial F ( L ) = F ( L ; a, x ) ∈ Z [ a ± 1 , x ± 1 ] is a link invariant defined as follows: F ( L ) := a − w ( D ) [ D ] , where w ( D ) is the writhe of a diagram D of a link L . In this talk, we study the highest degree of x in F ( L ) . 2/24

  3. HOMFLY polynomial The HOMFLY polynomial P ( L ) = P ( L ; v, z ) ∈ Z [ v ± 1 , z ± 1 ] is a link invariant defined as follows: W ( K ) : a Whitehead double of a knot K ➔ ➔ In this talk, we study the highest degree of z in P ( W ( K )) . 3/24

  4. ✛ ✘ Conj.1 [Kidwell-Stoimenow 2003] K : a nontrivial knot. ⇒ 2( x - maxdeg F ( K )) + 2 = z - maxdeg P ( W ( K )) . ✚ ✙ In this talk, we discuss the following conjecture. ✛ ✘ Conj.2 K : an alternating prime knot. ⇒ 2( x - maxdeg F ( K )) + 2 = z - maxdeg P ( W ( K )) . ✚ ✙ Prop.1 [Thistlethwaite 1988] K : an alternating prime knot ⇒ x - maxdeg F ( K ) = c ( K ) − 1 , where c ( K ) is the crossing number of K . 4/24

  5. From this Fact, Conj.2 ⇔ Conj.2’. ✛ ✘ Conj.2 K : an alternating prime knot. ⇒ 2( x - maxdeg F ( K )) + 2 = z - maxdeg P ( W ( K )) . ✚ ✙ ✛ ✘ Conj.2’ K : an alternating prime knot. ⇒ z - maxdeg P ( W ( K )) = 2 c ( K ) . ✚ ✙ Remark K : a nontrivial knot ⇒ z - maxdeg P ( W ( K )) ≤ 2 c ( K ) , by Morton’s inequality z - maxdeg P ( D ) ≤ 1 − s ( D ) + c ( D ) , where s ( D ) is the number of Seifert circles of a diagram D 5/24

  6. the coefficient of x c − 1 of F ( K ) the coefficient of z 2 c of P ( W ( K )) K a − 3 ( a − 1 + a ) v α ( v − 1 − v ) 3 1 ( a − 1 + a ) v α ( v − 1 − v ) 4 1 a − 5 ( a − 1 + a ) v α ( v − 1 − v ) 5 1 a − 5 ( a − 1 + a ) v α ( v − 1 − v ) 5 2 a − 2 ( a − 1 + a ) v α ( v − 1 − v ) 6 1 a − 2 ( a − 1 + a ) v α ( v − 1 − v ) 6 2 ( a − 1 + a ) v α ( v − 1 − v ) 6 3 a − 7 ( a − 1 + a ) v α ( v − 1 − v ) 7 1 a − 7 ( a − 1 + a ) v α ( v − 1 − v ) 7 2 a − 7 ( a − 1 + a ) v α ( v − 1 − v ) 7 3 a − 7 ( a − 1 + a ) v α ( v − 1 − v ) 7 4 a − 7 ( a − 1 + a ) v α ( v − 1 − v ) 7 5 a − 3 ( a − 1 + a ) v α ( v − 1 − v ) 7 6 a ( a − 1 + a ) v α ( v − 1 − v ) 7 7 —————————————————— α : a certain integer. 6/24

  7. the coefficient of x c − 1 of F ( K ) the coefficient of z 2 c of P ( W ( K )) K a − 3 ( a − 1 + a ) v α ( v − 1 − v ) 8 1 . . . . . . . . . 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 8 16 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 8 17 3 a − 3 ( a − 1 + a ) 3 v α ( v − 1 − v ) 8 18 a − 3 ( a − 1 + a ) v α ( v − 1 − v ) 9 1 . . . . . . . . . 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 9 39 4 a − 3 ( a − 1 + a ) 4 v α ( v − 1 − v ) 9 40 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 9 41 7/24

  8. the coefficient of x c − 1 of F ( K ) the coefficient of z 2 c of P ( W ( K )) K 1 a − 3 ( a − 1 + a ) 1 v α ( v − 1 − v ) 8 1 . . . . . . . . . 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 8 16 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 8 17 3 a − 3 ( a − 1 + a ) 3 v α ( v − 1 − v ) 8 18 1 a − 3 ( a − 1 + a ) 1 v α ( v − 1 − v ) 9 1 . . . . . . . . . 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 9 39 4 a − 3 ( a − 1 + a ) 4 v α ( v − 1 − v ) 9 40 2 a − 3 ( a − 1 + a ) 2 v α ( v − 1 − v ) 9 41 F ( K ; a ) : the coefficient of x c − 1 of F ( K ) . Def. P ( W ( K ); v ) : the coefficient of z 2 c of P ( W ( K )) . ϕ ( K ) := 1 π ( K ) := 1 2 F ( K ; 1) . 2 | P ( W ( K ); i ) | . 8/24

  9. Previous research ✛ ✘ Thm. [Gruber 2009] K : an alternating prime knot. ⇒ ϕ ( K ) ≡ π ( K ) (mod 2 ). ✚ ✙ Main results Main result 1 K : an alternating prime knot with c ( K ) ≤ 12 ⇒ ϕ ( K ) = π ( K ) . Cor. K : an alternating prime knot with c ( K ) ≤ 12 ⇒ 2( x - maxdeg F ( K ))+2 = z - maxdeg P ( W ( K )) . 9/24

  10. Main results Def. The standard projection of the (3 , n ) -torus link ( n = 2 , 3 , . . . ) this tangle of this projection 10/24

  11. Main result 2 D : a link projection . D ′ : a knot projection obtained by repeating the following operations from D . ➔ ➔ ➔ ➔ K : the knot presented by an alternating diagram with D ′ ⇒ ϕ ( K ) = π ( K ) = 2 | β | 2 | γ | ∏ ( n − 1) | δ n | , where | β | , | γ | , n ≥ 2 | δ n | is the number of times of ( β ) , ( γ ) , ( δ n ) to obtain D ′ . 11/24

  12. Example 12/24

  13. Example | β | = 1 13/24

  14. Example | β | = 1 , | γ | = 2 14/24

  15. Example | β | = 1 , | γ | = 2 , | δ 4 | = 1 15/24

  16. Example ϕ ( K ) = π ( K ) = 2 1 2 2 3 1 = 24 | β | = 1 , | γ | = 2 , | δ 4 | = 1 , 16/24

  17. Outline of the proof of Main results D : a connected, link projection. D alt : an alternating diagram with D. ϕ ( D ) := 1 Def. of ϕ ( D ) 2 F ( D alt ; 1) , where F ( D alt ; a ) the coefficient of x c ( D ) − 1 in F ( D alt ; a, x ) . π ( D ) := 1 Def. of π ( D ) 2 | P ( W ( D alt ); i ) | , where P ( W ( D alt ); v ) the coefficient of z 2 c ( D ) in P ( W ( D alt ); v, z ) . e.g. W ( D alt ) D 17/24

  18. Outline of the proof of Main results Prop.2 [Thistlethwaite 1988] (ii) D alt : a reducible diagram ⇒ ϕ ( D ) = 0 (iii) For a non-nugatory crossing, nugatory crossing ( ∵ ) (iii) By Kidwell’s inequality x - maxdeg F ( D ) ≤ c ( D ) − b ( D ) , where b ( D ) is the bridge length of a diagram D. and, the equation 18/24

  19. Outline of the proof of Main results Prop.2 [Thistlethwaite 1988] (ii) D alt : a reducible diagram ⇒ ϕ ( D ) = 0 (iii) For a non-nugatory crossing, Main lemma (ii) D alt : a reducible diagram of nontrivial knot ⇒ π ( D ) = 0 , for non-nugatory 19/24

  20. Outline of the proof of Main lemma (iii) At the relevant crossing P ( D 0 ) = z ( P ( D 5 ) + P ( D 7 )) , by Morton’s inequality. 20/24

  21. Topic related to ϕ ( K ) The chromatic invariant κ ( G ) is the graph invariant defined as follows: (1) (2) If G has a cut-edge or a loop, then κ ( G ) = 0 (3) For non cut-edge, Prop.3 [Thistlethwaite 1988] K : an alternating prime knot. G : a plane graph associated with a reduced diagram of K. ➔ G ⇒ ϕ ( K ) = κ ( G ) . 21/24

  22. Topic related to ϕ ( K ) The chromatic invariant κ ( G ) is the graph invariant defined as follows: (1) (2) If G has a cut-edge or a loop, then κ ( G ) = 0 (3) For non cut-edge, Remind (ii) D alt : a reducible diagram ⇒ ϕ ( D ) = 0 (iii) For a non-nugatory crossing, 22/24

  23. Topic related to π ( K ) g c ( K ) : the canonical genus of a knot K ☛ ✟ := min { g ( S ) | S is a Seifert surface obtained by Seifert’s algorithm } Conj.3 [Tripp 2002] K : a prime knot ⇒ g c ( W ( K )) = c ( K ) . ✡ ✠ Fact z - maxdeg P ( W ( K )) ≤ 2 g c ( W ( K )) ≤ 2 c ( K ) . ✛ ✘ Conj.4 [Tripp 2002, Nakamura 2006, Brittenham-Jensen 2006] K : an alternating prime knot ⇒ π ( K ) ̸ = 0 , therefore g c ( W ( K )) = c ( K ) . ✚ ✙ Cor. K : alternating prime knot s.t. c ( K ) ≤ 12 or satisfying the condition of Main result 2. ⇒ ϕ ( K ) = π ( K ) ̸ = 0 , therefore g c ( W ( K )) = c ( K ) . 23/24

  24. Further research • We can not obtain the following knot K by Main results. ϕ ( K ) = 11 . π ( K ) = ? ✓ ✏ • We propose the following conjectures. Main Conj.1 K : an alternating prime knot ⇒ ϕ ( K ) = π ( K ) . ✒ ✑ ✛ ✘ Main Conj.2 For any non-nugatory crossing, ✚ ✙ 24/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend