reduced basis methods and high performance computing
play

Reduced basis methods and high performance computing. Applications - PowerPoint PPT Presentation

Motivations and Framework Non Linear & MultiPhysics RB Applications Conclusions References Reduced basis methods and high performance computing. Applications to non-linear multi-physics problems Christophe Prudhomme


  1. Motivations and Framework Non Linear & MultiPhysics RB Applications Conclusions References Reduced basis methods and high performance computing. Applications to non-linear multi-physics problems Christophe Prud’homme prudhomme@unistra.fr Cemosis - http://www.cemosis.fr IRMA Université de Strasbourg 15 avril 2014 C. Prud’homme RB & HPC

  2. Motivations and Framework Non Linear & MultiPhysics RB Applications Conclusions References 1 Motivations and Framework 2 Reduced Basis for Non-Linear Problems and Extension to Multiphysics 3 Applications 4 Conclusions C. Prud’homme RB & HPC

  3. Motivations and Framework Non Linear & MultiPhysics RB Applications Conclusions References Collaborators on the framework Non-intrusive RB • Cecile Daversin (IRMA - UdS, • Rachida Chakir (LJLL - Strasbourg and CNRS/LNCMI, UPMC, Paris) Grenoble) • Yvon Maday (LJLL - • Christophe Prud’homme (IRMA - UdS, UPMC, Paris) Strasbourg) • Alexandre Ancel (IRMA - UdS, Current Funding Strasbourg) ANR/CHORUS, • Christophe Trophime (CNRS/LNCMI, ANR/HAMM, Grenoble) FRAE/RB4FASTSIM, ANR/Vivabrain, Labex • Stephane Veys (LJK - UJF, Grenoble) IRMIA, IDEX and former collaborators : S. Vallaghe, E. Schenone. C. Prud’homme RB & HPC

  4. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Motivations and Framework C. Prud’homme RB & HPC

  5. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References OPUS Heat Transfer Benchmark C. Prud’homme RB & HPC

  6. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Thermal Testcase Description y Hot air outflow Overview Γ 3 • Heat-Transfer with conduction Ω 43 and convection possibly coupled Ω 4 ( Air ) = ∪ 4 i = 1 Ω 4 i e IC with Navier-Stokes • Simple but complex enough to Γ 32 = Γ 23 Ω 2 ( IC 2 ) h IC = Ω 2 ∩ Ω 3 contain all difficulties to test the certified reduced basis x 2 Γ 1 Γ 2 h PCB Ω 42 Ω 44 • non symmetric, non e IC compliant Γ 1 • steady/unsteady Γ 31 = Γ 13 Ω 1 ( IC 1 ) h IC = Ω 1 ∩ Ω 3 • physical and geometrical parameters x 1 Ω 41 Ω 3 ( PCB ) • coupled models Γ 4 x • Testcase can be easily e PCB e a complexified Cooling air inflow (fan) C. Prud’homme RB & HPC

  7. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Thermal Testcase Description y Hot air outflow Heat transfer equation Γ 3 Ω 43 � ∂ T � ∂ t + v ·∇ T −∇· ( k i ∇ T ) = Q i , Ω 4 ( Air ) = ∪ 4 i = 1 Ω 4 i ρ C i e IC i = 1 , 2 , 3 , 4 Γ 32 = Γ 23 Ω 2 ( IC 2 ) h IC = Ω 2 ∩ Ω 3 Inputs x 2 h PCB Γ 1 Γ 2 Ω 42 Ω 44 µ = { e a ; k Ic ; D ; Q ; r } . e IC Γ 1 Γ 31 = Γ 13 Ω 1 ( IC 1 ) h IC Outputs = Ω 1 ∩ Ω 3 � 1 x 1 Ω 41 s 1 ( µ ) = T Ω 3 ( PCB ) e IC h IC Γ 4 Ω 2 x � e PCB e a s 2 ( µ ) = 1 T e a Cooling air inflow (fan) Ω 4 ∩ Γ 3 C. Prud’homme RB & HPC

  8. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Thermal Testcase Description y Hot air outflow Fluid model Γ 3 Poiseuille flow or Navier-Stokes flow Ω 43 Ω 4 ( Air ) = ∪ 4 i = 1 Ω 4 i e IC Boundary conditions • on Γ 3 ∩ Ω 3 , a zero flux Γ 32 = Γ 23 Ω 2 ( IC 2 ) h IC = Ω 2 ∩ Ω 3 • on Γ 3 ∩ Ω 4 , outflow x 2 Γ 1 Γ 2 h PCB • on Γ 4 , ( 0 ≤ x ≤ e Pcb + e a , y = 0 ) Ω 42 Ω 44 e IC temperature is set Γ 1 • Γ 1 and Γ 2 periodic Γ 31 = Γ 13 Ω 1 ( IC 1 ) h IC = Ω 1 ∩ Ω 3 • at interfaces between the ICs and x 1 Ω 41 PCB, thermal discontinuity Ω 3 ( PCB ) (conductance) Γ 4 x e PCB e a • on other internal boundaries, the continuity of the heat flux and Cooling air inflow (fan) temperature C. Prud’homme RB & HPC

  9. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Thermal Testcase Description Finite element method y Hot air outflow • P k , k = 1 , ..., 4 Lagrange elements Γ 3 • Weak treatment of Dirichlet Ω 43 conditions Ω 4 ( Air ) = ∪ 4 i = 1 Ω 4 i e IC • CIP Stabilisation • Locally Discontinuous FEM Γ 32 = Γ 23 Ω 2 ( IC 2 ) h IC = Ω 2 ∩ Ω 3 functions x 2 h PCB Γ 1 Γ 2 Validation Ω 42 Ω 44 e IC • Comparison between Γ 1 Comsol(EADS) and Feel++ Γ 31 = Γ 13 Ω 1 ( IC 1 ) h IC = Ω 1 ∩ Ω 3 • Extensive testing and comparisons x 1 Ω 41 • Implementation validated, ref. Ω 3 ( PCB ) Γ 4 config. max rel error < 1% x e PCB e a • Diff. : mesh, stabilisation, Dirichlet Cooling air inflow (fan) C. Prud’homme RB & HPC

  10. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Thermal Testcase Description y Hot air outflow Γ 3 Ω 43 Ω 4 ( Air ) = ∪ 4 i = 1 Ω 4 i e IC Γ 32 = Γ 23 Ω 2 ( IC 2 ) h IC = Ω 2 ∩ Ω 3 x 2 h PCB Γ 1 Γ 2 Ω 42 Ω 44 e IC Γ 1 Γ 31 = Γ 13 Ω 1 ( IC 1 ) h IC = Ω 1 ∩ Ω 3 x 1 Ω 41 Ω 3 ( PCB ) Γ 4 Figure : Temperature plot for x e PCB e a e a ∈ { 2 . 5 e − 3 , 8 e − 3 , 5 e − 2 } Cooling air inflow (fan) C. Prud’homme RB & HPC

  11. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Chorus Aerothermal Flow Benchmark C. Prud’homme RB & HPC

  12. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Aerothermic : air conditioning/environment control systems y 1 • Steady Navier-Stokes/Heat Γ 4 Γ f transfer problem T 0 Γ 1 Γ 3 Heat flux Ω( Fluid ) • 2 parameters : Grashof and Γ 2 Prandtl number 0 W • Study the average temperature x 0 W on heated surface with respect to parameters Figure : Geometry of the 2D model. Consider an extrusion of this geometry • Application to aerothermal in 3D case is the extrusion in z axis of studies (buildings, cars, airplane length 1. cabins,...) C. Prud’homme RB & HPC

  13. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Aerothermic : air conditioning/environment control systems • Steady Navier-Stokes/Heat transfer problem • Coupling 2D/3D mesh based aerothermal model with ECS modelica model • ECS and A/C design Figure : Design and sizing of thermal parameters to be optimized control of avionic bay and cabin (a) Airplane Cabin (b) Airplane Bay (c) 2D temperature iso- surfaces C. Prud’homme RB & HPC

  14. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References HiFiMagnet project High Field Magnet Modeling C. Prud’homme RB & HPC

  15. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Laboratoire National des Champs Magnétiques Intenses Large scale user facility in France • High magnetic field : from 24 T • Grenoble : continuous magnetic field (36 T) • Toulouse : pulsed magnetic field (90 T) Application domains Magnetic Field • Magnetoscience • Earth : 5 . 8 · 10 − 4 T • Solide state physic • Supraconductors : 24 T • Chemistry • Continuous field : 36 T • Biochemistry • Pulsed field : 90 T Access • Call for Magnet Time : 2 × per year • ≈ 140 projects per year C. Prud’homme RB & HPC

  16. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References High Field Magnet Modeling C. Prud’homme RB & HPC

  17. Motivations and Framework Introduction Non Linear & MultiPhysics RB Feel++ Applications Features Conclusions High Performance Computing References Why use Reduced Basis Methods ? Challenges • Modeling : multi-physics non-linear models, complex geometries, genericity • Account for uncertainties : uncertainty quantification, sensitivity analysis • Optimization : shape of magnets, robustness of design Objective 1 : Fast Objective 2 : Reliable • Complex geometries • Field quality • Large number of dofs • Design optimization • Uncertainty quantification • Certified bounds • Large number of runs • Reach material limits C. Prud’homme RB & HPC

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend