reduced basis methods
play

Reduced Basis Methods Karsten Urban for (some particular) Ulm - PowerPoint PPT Presentation

Reduced Basis Methods Karsten Urban for (some particular) Ulm University (Germany) HJB equations Institute for Numerical Mathematics page 1/27 RBM for HJB | RICAM 2016 | Karsten Urban | Acknowledgements Acknowledgements joint work with


  1. Reduced Basis Methods Karsten Urban for (some particular) Ulm University (Germany) HJB equations Institute for Numerical Mathematics

  2. page 1/27 RBM for HJB | RICAM 2016 | Karsten Urban | Acknowledgements Acknowledgements ◮ joint work with ◮ R¨ udiger Kiesel (Duisburg-Essen) ◮ Silke Glas, Sebastian Steck (Ulm) ◮ Funding: ◮ Deutsche Forschungsgemeinschaft (DFG: GrK1100, Ur-63/9, SPP1324) ◮ Federal Ministry of Economy (BMWT)

  3. page 2/27 RBM for HJB | RICAM 2016 | Karsten Urban | Acknowledgements Outline 1 “Particular”HJB: The EU-ETS (A very short) Introduction to RBM 2 RBM for the EU-ETS-HJB 3 Conclusions and outlook 4

  4. page 3/27 RBM for HJB | RICAM 2016 | Karsten Urban | “Particular” HJB: The EU-ETS 1 “Particular”HJB: The EU-ETS (A very short) Introduction to RBM 2 RBM for the EU-ETS-HJB 3 Conclusions and outlook 4

  5. page 4/27 RBM for HJB | RICAM 2016 | Karsten Urban | “Particular” HJB: The EU-ETS EU-ETS: European Union Emission Trading System ◮ anthropogenic global warming ◮ Kyoto protocol: limit of CO 2 -emissions ◮ according amount of emission permits are issued

  6. page 4/27 RBM for HJB | RICAM 2016 | Karsten Urban | “Particular” HJB: The EU-ETS EU-ETS: European Union Emission Trading System ◮ anthropogenic global warming ◮ Kyoto protocol: limit of CO 2 -emissions ◮ according amount of emission permits are issued ◮ permits are traded at the exchange: EU-ETS ◮ penalty for emissions not covered by permits

  7. page 4/27 RBM for HJB | RICAM 2016 | Karsten Urban | “Particular” HJB: The EU-ETS EU-ETS: European Union Emission Trading System ◮ anthropogenic global warming ◮ Kyoto protocol: limit of CO 2 -emissions ◮ according amount of emission permits are issued ◮ permits are traded at the exchange: EU-ETS ◮ penalty for emissions not covered by permits ◮ goal here: public control of EU-ETS: abate 5% of emissions

  8. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  9. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] ◮ state Y τ ∈ R d , τ ∈ [0 , T ]: amount of uncovered emissions ( d : # companies) [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  10. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] ◮ state Y τ ∈ R d , τ ∈ [0 , T ]: amount of uncovered emissions ( d : # companies) ◮ control π τ ∈ R d : additional abatement compared to business as usual [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  11. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] ◮ state Y τ ∈ R d , τ ∈ [0 , T ]: amount of uncovered emissions ( d : # companies) ◮ control π τ ∈ R d : additional abatement compared to business as usual ◮ optimal abatement strategy π = ( π τ ) τ ∈ [0 , T ] : should minimize the expected abatement costs (cost functional) �� T � f π ( τ, Y τ ) d τ + h ( Y T ) J ( π ) := E 0 ◮ f π : running abatement cost using strategy π ◮ h : penalty at the end of the trading period [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  12. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] ◮ state Y τ ∈ R d , τ ∈ [0 , T ]: amount of uncovered emissions ( d : # companies) ◮ control π τ ∈ R d : additional abatement compared to business as usual ◮ optimal abatement strategy π = ( π τ ) τ ∈ [0 , T ] : should minimize the expected abatement costs (cost functional) �� T � f π ( τ, Y τ ) d τ + h ( Y T ) J ( π ) := E 0 ◮ f π : running abatement cost using strategy π ◮ h : penalty at the end of the trading period ◮ stochastic model for Y τ : dY τ = b π ( τ, Y τ ) d τ + σ π ( τ, Y τ ) dW τ , τ ∈ (0 , T ] , Y 0 = y 0 ◮ W τ : a d -dimensional Wiener process ◮ b π , σ π : drift and volatility coefficients, b π , σ π ( σ π ) T linear in π . [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  13. page 5/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System Modeling EU-ETS ◮ trading periods: [0 , T ] ◮ equlibirium ≡ sum of costs of all market participants is minimal [1] ◮ state Y τ ∈ R d , τ ∈ [0 , T ]: amount of uncovered emissions ( d : # companies) ◮ control π τ ∈ R d : additional abatement compared to business as usual ◮ optimal abatement strategy π = ( π τ ) τ ∈ [0 , T ] : should minimize the expected abatement costs (cost functional) �� T � f γ ( τ, Y τ ) d τ + h ( Y T ) J ( t , x ; γ ) := E t ◮ f π : running abatement cost using strategy π ◮ h : penalty at the end of the trading period ◮ stochastic model for Y τ : dY τ = b π ( τ, Y τ ) d τ + σ π ( τ, Y τ ) dW τ , τ ∈ ( t , T ] , Y t = x ◮ W τ : a d -dimensional Wiener process ◮ b π , σ π : drift and volatility coefficients, b π , σ π ( σ π ) T linear in π . [1] Camora, Fehr, Hinz: Optimal Stochastic Control and Carbon Price Formation, 2009

  14. page 6/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 1/3 ◮ value function ( x ∈ R d ) u ( t , x ) = inf γ ∈ Γ J ( t , x ; γ ) ∀ t ∈ [0 , T ) , u ( T , x ) = h ( x ) ◮ Γ ⊂ L ∞ ((0 , T ) × R d ; R d ): set of admissible controls [2] Yong, Zhou: Stochastic controls: Hamiltonian systems and HJB equations, 1999

  15. page 6/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 1/3 ◮ value function ( x ∈ R d ) u ( t , x ) = inf γ ∈ Γ J ( t , x ; γ ) ∀ t ∈ [0 , T ) , u ( T , x ) = h ( x ) ◮ Γ ⊂ L ∞ ((0 , T ) × R d ; R d ): set of admissible controls ◮ HJB [2] � 1 2tr( σ γ ( σ γ ) T ∇ 2 u ( t , x )) + b γ · ∇ u ( t , x ) − f γ ( t , x ) � ∂ t u ( t , x ) + sup = 0 γ ∈ Γ [2] Yong, Zhou: Stochastic controls: Hamiltonian systems and HJB equations, 1999

  16. page 6/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 1/3 ◮ value function ( x ∈ R d ) u ( t , x ) = inf γ ∈ Γ J ( t , x ; γ ) ∀ t ∈ [0 , T ) , u ( T , x ) = h ( x ) ◮ Γ ⊂ L ∞ ((0 , T ) × R d ; R d ): set of admissible controls ◮ HJB [2] � 1 2tr( σ γ ( σ γ ) T ∇ 2 u ( t , x )) + b γ · ∇ u ( t , x ) − f γ ( t , x ) � ∂ t u ( t , x ) + sup = 0 γ ∈ Γ ◮ parameters µ ∈ D ⊂ R P e.g. regulatory constraints, market values, etc. f γ ( µ ), b γ ( µ ), σ γ ( µ ), J ( µ ; t , x ; γ ) � u ( µ ) = u ( µ ; t , x ) [2] Yong, Zhou: Stochastic controls: Hamiltonian systems and HJB equations, 1999

  17. page 6/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 1/3 ◮ value function ( x ∈ R d ) u ( t , x ) = inf γ ∈ Γ J ( t , x ; γ ) ∀ t ∈ [0 , T ) , u ( T , x ) = h ( x ) ◮ Γ ⊂ L ∞ ((0 , T ) × R d ; R d ): set of admissible controls ◮ HJB [2] � 1 2tr( σ γ ( σ γ ) T ∇ 2 u ( t , x )) + b γ · ∇ u ( t , x ) − f γ ( t , x ) � ∂ t u ( t , x ) + sup = 0 γ ∈ Γ ◮ parameters µ ∈ D ⊂ R P e.g. regulatory constraints, market values, etc. f γ ( µ ), b γ ( µ ), σ γ ( µ ), J ( µ ; t , x ; γ ) � u ( µ ) = u ( µ ; t , x ) ◮ Goal: find“optimal”parameters (also in realtime) [2] Yong, Zhou: Stochastic controls: Hamiltonian systems and HJB equations, 1999

  18. page 7/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 2/3 ◮ parameterized coefficients: u �→ A γ ( µ ; u ) := − a γ ( µ ) ∆ u + b γ ( µ ) · ∇ u + c γ ( µ ) u , µ ∈ D .

  19. page 7/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 2/3 ◮ parameterized coefficients: u �→ A γ ( µ ; u ) := − a γ ( µ ) ∆ u + b γ ( µ ) · ∇ u + c γ ( µ ) u , µ ∈ D . ◮ parameterized Hamilton-type operator H ( µ ; u ) := sup { A γ ( µ ; u ) − f γ ( µ ) } γ ∈ Γ

  20. page 7/27 RBM for HJB | RICAM 2016 | Karsten Urban | Model of the Emission Trading System (Parameterized) Hamilton Jacobi Bellman Equation 2/3 ◮ parameterized coefficients: u �→ A γ ( µ ; u ) := − a γ ( µ ) ∆ u + b γ ( µ ) · ∇ u + c γ ( µ ) u , µ ∈ D . ◮ parameterized Hamilton-type operator H ( µ ; u ) := sup { A γ ( µ ; u ) − f γ ( µ ) } γ ∈ Γ ◮ P-HJB ∂ t u + H ( µ ; u ) = 0 , in Ω T , (1a) ∂ ∂ nu = ψ, on ∂ Ω T = (0 , T ) × ∂ Ω , (1b) on ¯ u ( T ) = u T , Ω , (1c)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend