reduced basis methods for option pricing
play

Reduced Basis Methods for Option Pricing page 1/54 Reduced Basis - PowerPoint PPT Presentation

Karsten Urban Reduced Basis Methods for Option Pricing page 1/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Acknowledgements joint work with / contributions from Silke Glas, Antonia Mayerhofer,


  1. page 8/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Parabolic PDEs / Space-Time variational formulation ◮ V := H 1 → V ′ , I := ( 0 , T ) 0 ( D ) , H := L 2 ( D ) , V ֒ → H ֒ ◮ � ˙ u ( t ) , z ( t ) � V ′ × V + a ( u ( t ) , z ( t )) = � g ( t ) , z ( t ) � V ′ × V ∀ v ( t ) ∈ V , t ∈ I ( a . e . ) ∀ ζ ∈ H ( u ( 0 ) , ζ ) H = ( u 0 , ζ ) H ◮ Integrate over time � Trial space: L 2 ( I ; V ) := � ◮ Z := L 2 ( I ; V ) := { w : I → V : � w � 2 I � w ( t ) � 2 V dt < ∞} (Bochner space) → C (¯ ◮ X := { w ∈ Z : ˙ w ∈ Z ′ } = L 2 ( I ; V ) ∩ H 1 ( I ; V ′ ) ֒ I ; H ) ◮ � w � 2 X := � w � 2 w � 2 Z ′ + � w ( T ) � 2 Z + � ˙ H ◮ Include also initial condition � Test space: ◮ Y = Z × H , � v � 2 Y := � z � 2 Z + � ζ � 2 H for v = ( z , ζ ) in Y � � b ( u , v ) := � ˙ u ( t ) , z ( t ) � V ′ × V dt + a ( u ( t ) , z ( t )) dt + ( u ( 0 ) , ζ ) H I I = b 1 ( w , z ) + ( u ( 0 ) , ζ ) H � � g ( t ) , z ( t ) � V ′ × V dt + ( µ 0 , ζ ) H =: g 1 ( z ) + ( u 0 , ζ ) H f ( v ) := I Variational formulation (Petrov-Galerkin) find u ∈ X s.t. b ( u , v ) = f ( v ) ∀ v ∈ Y .

  2. page 9/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Parabolic PPDEs / Space-Time variational formulation ◮ V := H 1 → V ′ , I := ( 0 , T ) 0 ( D ) , H := L 2 ( D ) , V ֒ → H ֒ ◮ � ˙ u ( t ) , φ � V ′ × V + a ( µ 1 , u ( t ) , φ ) = � g ( µ 1 ; t ) , φ � V ′ × V ∀ t ∈ I ( a . e . ) u ( 0 ) = µ 0 ◮ Integrate over time � Trial space: L 2 ( I ; V ) := � ◮ Z := L 2 ( I ; V ) := { w : I → V : � w � 2 I � w ( t ) � 2 V dt < ∞} (Bochner space) ◮ X := { w ∈ Z : ˙ w ∈ Z ′ } = L 2 ( I ; V ) ∩ H 1 ( I ; V ′ ) ֒ → C ( I ; H ) ◮ � w � 2 X := � w � 2 w � 2 Z ′ + � w ( T ) � 2 Z + � ˙ H ◮ Include also initial condition � Test space: ◮ Y = Z × H , � v � 2 Y := � z � 2 Z + � ζ � 2 H for v = ( z , ζ ) in Y � � b ( µ 1 ; u , v ) := � ˙ u ( t ) , z ( t ) � V ′ × V dt + a ( µ 1 ; u ( t ) , z ( t )) dt + ( w ( 0 ) , ζ ) H I I = b 1 ( µ 1 ; w , z ) + ( u ( 0 ) , ζ ) H � f ( µ ; v ) := � g ( µ 1 ; t ) , z ( t ) � V ′ × V dt + ( µ 0 , ζ ) H =: g 1 ( µ 1 ; z ) + ( µ 0 , ζ ) H I Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y .

  3. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y

  4. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y ◮ if b ( µ 1 ; · , · ) bounded: problem well-posed ⇐ ⇒ inf-sup condition holds ( β > 0)

  5. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y ◮ if b ( µ 1 ; · , · ) bounded: problem well-posed ⇐ ⇒ inf-sup condition holds ( β > 0) ◮ error/residual bound: b ( µ 1 ; u − u η , v ) f ( µ ; v ) − b ( µ 1 ; u η , v ) β � u − u η � X ≤ sup = sup = � r η ( µ ) � Y ′ � v � Y � v � Y v ∈Y v ∈Y

  6. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y ◮ if b ( µ 1 ; · , · ) bounded: problem well-posed ⇐ ⇒ inf-sup condition holds ( β > 0) ◮ error/residual bound: b ( µ 1 ; u − u η , v ) f ( µ ; v ) − b ( µ 1 ; u η , v ) β � u − u η � X ≤ sup = sup = � r η ( µ ) � Y ′ � v � Y � v � Y v ∈Y v ∈Y ◮ online: solve one N × N linear system (no time-stepping)

  7. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y ◮ if b ( µ 1 ; · , · ) bounded: problem well-posed ⇐ ⇒ inf-sup condition holds ( β > 0) ◮ error/residual bound: b ( µ 1 ; u − u η , v ) f ( µ ; v ) − b ( µ 1 ; u η , v ) β � u − u η � X ≤ sup = sup = � r η ( µ ) � Y ′ � v � Y � v � Y v ∈Y v ∈Y ◮ online: solve one N × N linear system (no time-stepping) ◮ ex: traveling wave is 1 snapshot

  8. page 10/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Why space-time? Variational formulation (Petrov-Galerkin) find u ( µ ) ∈ X s.t. b ( µ 1 ; u ( µ ) , v ) = f ( µ ; v ) ∀ v ∈ Y . b ( µ 1 ; w , v ) β := inf w ∈X sup � w � X � v � Y v ∈Y ◮ if b ( µ 1 ; · , · ) bounded: problem well-posed ⇐ ⇒ inf-sup condition holds ( β > 0) ◮ error/residual bound: b ( µ 1 ; u − u η , v ) f ( µ ; v ) − b ( µ 1 ; u η , v ) β � u − u η � X ≤ sup = sup = � r η ( µ ) � Y ′ � v � Y � v � Y v ∈Y v ∈Y ◮ online: solve one N × N linear system (no time-stepping) ◮ ex: traveling wave is 1 snapshot – (offline) dimension increased by one (cpu / memory)

  9. page 11/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Well-posedness / inf-sup-constant √ � w ( 0 ) � H � φ � V ◮ C e := sup w ∈X\{ 0 } ≤ 3, ̺ := sup 0 � = φ ∈ V ( ≤ 1 ) � w � X � φ � H

  10. page 11/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Well-posedness / inf-sup-constant √ � w ( 0 ) � H � φ � V ◮ C e := sup w ∈X\{ 0 } ≤ 3, ̺ := sup 0 � = φ ∈ V ( ≤ 1 ) � w � X � φ � H a ( µ 1 ; φ, φ ) + λ a � φ � 2 H ≥ α a � φ � 2 ◮ a ( µ 1 ; φ, ψ ) ≤ M a � φ � V � ψ � V , V

  11. page 11/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Well-posedness / inf-sup-constant √ � w ( 0 ) � H � φ � V ◮ C e := sup w ∈X\{ 0 } ≤ 3, ̺ := sup 0 � = φ ∈ V ( ≤ 1 ) � w � X � φ � H a ( µ 1 ; φ, φ ) + λ a � φ � 2 H ≥ α a � φ � 2 ◮ a ( µ 1 ; φ, ψ ) ≤ M a � φ � V � ψ � V , V a ( µ 1 ; ψ, φ ) ◮ β ∗ a := µ 1 ∈D 1 inf inf φ ∈ V sup > 0 � φ � V � ψ � V ψ ∈ V

  12. page 11/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Well-posedness / inf-sup-constant √ � w ( 0 ) � H � φ � V ◮ C e := sup w ∈X\{ 0 } ≤ 3, ̺ := sup 0 � = φ ∈ V ( ≤ 1 ) � w � X � φ � H a ( µ 1 ; φ, φ ) + λ a � φ � 2 H ≥ α a � φ � 2 ◮ a ( µ 1 ; φ, ψ ) ≤ M a � φ � V � ψ � V , V a ( µ 1 ; ψ, φ ) ◮ β ∗ a := µ 1 ∈D 1 inf inf φ ∈ V sup > 0 � φ � V � ψ � V ψ ∈ V b ( µ 1 ; w , v ) ◮ we look for: β b := µ 1 ∈D 1 inf inf w ∈X sup � w � X � v � Y v ∈Y

  13. page 11/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Well-posedness / inf-sup-constant √ � w ( 0 ) � H � φ � V ◮ C e := sup w ∈X\{ 0 } ≤ 3, ̺ := sup 0 � = φ ∈ V ( ≤ 1 ) � w � X � φ � H a ( µ 1 ; φ, φ ) + λ a � φ � 2 H ≥ α a � φ � 2 ◮ a ( µ 1 ; φ, ψ ) ≤ M a � φ � V � ψ � V , V a ( µ 1 ; ψ, φ ) ◮ β ∗ a := µ 1 ∈D 1 inf inf φ ∈ V sup > 0 � φ � V � ψ � V ψ ∈ V b ( µ 1 ; w , v ) ◮ we look for: β b := µ 1 ∈D 1 inf inf w ∈X sup � w � X � v � Y v ∈Y ◮ inf-sup bounds: coer ( α, λ, M , C ) := min { min { 1 , M − 2 } ( α − λ̺ 2 ) , 1 } β LB , � 2 max { 1 , ( β ∗ a ) − 1 } + C 2 e − 2 λ T β LB β LB time ( α, λ, M , C , T ) := coer ( α, 0 , M , C ) � max { 2 , 1 + 2 λ 2 ̺ 4 } Proposition (Inf-sup bound (Schawb/Stevenson, U./Patera) ) Let a ( · ; · , · ) be bounded (M a ) and satisfy a Garding inequality ( α a , λ a ). Then, β b ≥ β LB := max { β LB coer ( α a , λ a , M a , C e ) , β LB time ( α a , λ a , M a , C e , T ) } . b

  14. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H

  15. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h

  16. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K }

  17. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K } ◮ Discretization for initial value: ◮ trial: I L := span { ψ 1 , . . . , ψ L } ⊂ H 1 ( D ) , Ψ := { ψ i : i ∈ N } Riesz basis, 1 ≤ L ≤ ∞ ◮ test: H M = span { h 1 , . . . , h M } h m ∈ H

  18. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K } ◮ Discretization for initial value: ◮ trial: I L := span { ψ 1 , . . . , ψ L } ⊂ H 1 ( D ) , Ψ := { ψ i : i ∈ N } Riesz basis, 1 ≤ L ≤ ∞ ◮ test: H M = span { h 1 , . . . , h M } h m ∈ H ◮ X (∆ t , h , L ) := ( σ 0 ⊗ I L ) ⊕ ( E ∆ t ⊗ V h ) =: ( σ 0 ⊗ I L ) ⊕ W δ

  19. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K } ◮ Discretization for initial value: ◮ trial: I L := span { ψ 1 , . . . , ψ L } ⊂ H 1 ( D ) , Ψ := { ψ i : i ∈ N } Riesz basis, 1 ≤ L ≤ ∞ ◮ test: H M = span { h 1 , . . . , h M } h m ∈ H ◮ X (∆ t , h , L ) := ( σ 0 ⊗ I L ) ⊕ ( E ∆ t ⊗ V h ) =: ( σ 0 ⊗ I L ) ⊕ W δ ◮ Y (∆ t , h , M ) = F ∆ t ⊗ V h × H M =: Z δ × H M , δ = (∆ t , h ) , η := ( δ, M )

  20. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K } ◮ Discretization for initial value: ◮ trial: I L := span { ψ 1 , . . . , ψ L } ⊂ H 1 ( D ) , Ψ := { ψ i : i ∈ N } Riesz basis, 1 ≤ L ≤ ∞ ◮ test: H M = span { h 1 , . . . , h M } h m ∈ H ◮ X (∆ t , h , L ) := ( σ 0 ⊗ I L ) ⊕ ( E ∆ t ⊗ V h ) =: ( σ 0 ⊗ I L ) ⊕ W δ ◮ Y (∆ t , h , M ) = F ∆ t ⊗ V h × H M =: Z δ × H M , δ = (∆ t , h ) , η := ( δ, M ) Crank-Nicolson scheme M ) T u 0 N init M ( N init η ( µ ) = P M c ( µ 0 ) , (1a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (1b) η δ δ

  21. page 12/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Discretization ◮ Note: trial and test spaces are tensor products : ◮ X = H 1 ( I ) ⊗ V Y = Z × H := L 2 ( I ; V ) × H = ( L 2 ( I ) ⊗ V ) × H ◮ FE in space: V h := span { φ 1 , . . . , φ n h } w.r.t. T space , h ◮ FE in time: E ∆ t = { σ 1 , . . . , σ K } ⊂ H 1 { 0 } ( I ) (pw. linear) and F ∆ t ⊂ L 2 ( I ) (pw. constant) w.r.t. T time , ∆ t := { t k = k ∆ t : 0 ≤ k ≤ K , ∆ t := T K } ◮ Discretization for initial value: ◮ trial: I L := span { ψ 1 , . . . , ψ L } ⊂ H 1 ( D ) , Ψ := { ψ i : i ∈ N } Riesz basis, 1 ≤ L ≤ ∞ ◮ test: H M = span { h 1 , . . . , h M } h m ∈ H ◮ X (∆ t , h , L ) := ( σ 0 ⊗ I L ) ⊕ ( E ∆ t ⊗ V h ) =: ( σ 0 ⊗ I L ) ⊕ W δ ◮ Y (∆ t , h , M ) = F ∆ t ⊗ V h × H M =: Z δ × H M , δ = (∆ t , h ) , η := ( δ, M ) Crank-Nicolson scheme M ) T u 0 N init M ( N init η ( µ ) = P M c ( µ 0 ) , (1a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (1b) η δ δ ⊗ M space ⊗ A space ◮ note: B δ ( µ 1 ) := N time + M time ( µ 1 ) ∈ R Kn h × Kn h ∆ t ∆ t h h

  22. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ

  23. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ ˘ X δ := { w δ ∈ X δ : w δ ( 0 ) = 0 } (homogeneous initial conditions) ◮

  24. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ ˘ X δ := { w δ ∈ X δ : w δ ( 0 ) = 0 } (homogeneous initial conditions) ◮ Two step offline computation u 0 , 0 ( u 0 , 0 η ( µ 0 ) ∈ I M : η ( µ 0 ) , ζ M ) H = ( µ 0 , ζ M ) H ∀ ζ M ∈ H M , (3) u η ( µ ) , z δ ) = ˘ u η ( µ ) ∈ ˘ f ( u 0 ˘ X δ : b 1 ( µ 1 ; ˘ η ( µ 0 ) , µ 1 ; z δ ) ∀ z δ ∈ Z δ , (4) η ( µ 0 ) := σ 0 ⊗ u 0 , 0 η ( µ 0 ) , ˘ ◮ u 0 f appropriate

  25. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ ˘ X δ := { w δ ∈ X δ : w δ ( 0 ) = 0 } (homogeneous initial conditions) ◮ Two step offline computation u 0 , 0 ( u 0 , 0 η ( µ 0 ) ∈ I M : η ( µ 0 ) , ζ M ) H = ( µ 0 , ζ M ) H ∀ ζ M ∈ H M , (3) u η ( µ ) , z δ ) = ˘ u η ( µ ) ∈ ˘ f ( u 0 ˘ X δ : b 1 ( µ 1 ; ˘ η ( µ 0 ) , µ 1 ; z δ ) ∀ z δ ∈ Z δ , (4) η ( µ 0 ) := σ 0 ⊗ u 0 , 0 η ( µ 0 ) , ˘ ◮ u 0 f appropriate ◮ solve (4) e.g. by Crank-Nicolson or by tensor techniques for B δ ( µ 1 )

  26. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ ˘ X δ := { w δ ∈ X δ : w δ ( 0 ) = 0 } (homogeneous initial conditions) ◮ Two step offline computation u 0 , 0 ( u 0 , 0 η ( µ 0 ) ∈ I M : η ( µ 0 ) , ζ M ) H = ( µ 0 , ζ M ) H ∀ ζ M ∈ H M , (3) u η ( µ ) , z δ ) = ˘ u η ( µ ) ∈ ˘ f ( u 0 ˘ X δ : b 1 ( µ 1 ; ˘ η ( µ 0 ) , µ 1 ; z δ ) ∀ z δ ∈ Z δ , (4) η ( µ 0 ) := σ 0 ⊗ u 0 , 0 η ( µ 0 ) , ˘ ◮ u 0 f appropriate ◮ solve (4) e.g. by Crank-Nicolson or by tensor techniques for B δ ( µ 1 ) ◮ inf-sup-stability (U., Patera) � error/residual estimator

  27. page 13/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Offline computations (Mayerhofer, U.) Crank-Nicolson scheme N init M ( N init M ) T u 0 η ( µ ) = P M c ( µ 0 ) , (2a) 1 ( µ )) + A ℓ ( µ 1 ) u ℓ − 1 / 2 ( µ ) = g ℓ − 1 / 2 ∆ t M ℓ ( u ℓ η ( µ ) − u ℓ − 1 ( µ 1 ) , ℓ ≥ 1 . (2b) η δ δ ˘ X δ := { w δ ∈ X δ : w δ ( 0 ) = 0 } (homogeneous initial conditions) ◮ Two step offline computation u 0 , 0 ( u 0 , 0 η ( µ 0 ) ∈ I M : η ( µ 0 ) , ζ M ) H = ( µ 0 , ζ M ) H ∀ ζ M ∈ H M , (3) u η ( µ ) , z δ ) = ˘ u η ( µ ) ∈ ˘ f ( u 0 ˘ X δ : b 1 ( µ 1 ; ˘ η ( µ 0 ) , µ 1 ; z δ ) ∀ z δ ∈ Z δ , (4) η ( µ 0 ) := σ 0 ⊗ u 0 , 0 η ( µ 0 ) , ˘ ◮ u 0 f appropriate ◮ solve (4) e.g. by Crank-Nicolson or by tensor techniques for B δ ( µ 1 ) ◮ inf-sup-stability (U., Patera) � error/residual estimator ◮ stabilization or by stabilizer, double Greedy, ... (Andreev; Rozza et al, Dahmen, Welper, ...)

  28. page 14/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 1/3 ◮ choose X N ⊂ X η by snapshots (Greedy, nonlinear approximation)

  29. page 14/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 1/3 ◮ choose X N ⊂ X η by snapshots (Greedy, nonlinear approximation) ◮ given µ = ( µ 0 , µ 1 ) ∈ D ; choose stable Y N ( µ ) (e.g. by stabilizer) u N ( µ ) ∈ X N : b ( µ 1 ; u N ( µ ) , v N ) = f ( µ ; v N ) ∀ v N ∈ Y N ( µ ) . (5)

  30. page 14/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 1/3 ◮ choose X N ⊂ X η by snapshots (Greedy, nonlinear approximation) ◮ given µ = ( µ 0 , µ 1 ) ∈ D ; choose stable Y N ( µ ) (e.g. by stabilizer) u N ( µ ) ∈ X N : b ( µ 1 ; u N ( µ ) , v N ) = f ( µ ; v N ) ∀ v N ∈ Y N ( µ ) . (5) ◮ residual for v = ( z , ζ ) ∈ Y : r N ( µ ; v ) = f ( µ ; v ) − b ( µ ; u N ( µ ) , v ) = g 1 ( µ 1 ; z ) − b 1 ( µ 1 ; u N ( µ ) , z ) + ( µ 0 − ( u N ( µ ))( 0 ) , ζ ) H =: r N , 1 ( µ ; z ) + r N , 0 ( µ ; ζ ) ,

  31. page 14/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 1/3 ◮ choose X N ⊂ X η by snapshots (Greedy, nonlinear approximation) ◮ given µ = ( µ 0 , µ 1 ) ∈ D ; choose stable Y N ( µ ) (e.g. by stabilizer) u N ( µ ) ∈ X N : b ( µ 1 ; u N ( µ ) , v N ) = f ( µ ; v N ) ∀ v N ∈ Y N ( µ ) . (5) ◮ residual for v = ( z , ζ ) ∈ Y : r N ( µ ; v ) = f ( µ ; v ) − b ( µ ; u N ( µ ) , v ) = g 1 ( µ 1 ; z ) − b 1 ( µ 1 ; u N ( µ ) , z ) + ( µ 0 − ( u N ( µ ))( 0 ) , ζ ) H =: r N , 1 ( µ ; z ) + r N , 0 ( µ ; ζ ) , ◮ Idea: setup a two-stage RBM similar to offline

  32. page 14/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 1/3 ◮ choose X N ⊂ X η by snapshots (Greedy, nonlinear approximation) ◮ given µ = ( µ 0 , µ 1 ) ∈ D ; choose stable Y N ( µ ) (e.g. by stabilizer) u N ( µ ) ∈ X N : b ( µ 1 ; u N ( µ ) , v N ) = f ( µ ; v N ) ∀ v N ∈ Y N ( µ ) . (5) ◮ residual for v = ( z , ζ ) ∈ Y : r N ( µ ; v ) = f ( µ ; v ) − b ( µ ; u N ( µ ) , v ) = g 1 ( µ 1 ; z ) − b 1 ( µ 1 ; u N ( µ ) , z ) + ( µ 0 − ( u N ( µ ))( 0 ) , ζ ) H =: r N , 1 ( µ ; z ) + r N , 0 ( µ ; ζ ) , ◮ Idea: setup a two-stage RBM similar to offline ◮ Recall: (5) won’t be time-marching! ◮ no sum up of time-discrete residuals ◮ but: space-time

  33. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 }

  34. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 } ◮ RB-approximation u 0 , 0 N ( µ 0 ) ∈ I N 0 for new µ 0 : ( u 0 , 0 ∀ ζ N ∈ H N 0 := span { h 1 N 0 , . . . , h N 0 N ( µ 0 ) , ζ N ) H = ( µ 0 , ζ N ) H N 0 }

  35. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 } ◮ RB-approximation u 0 , 0 N ( µ 0 ) ∈ I N 0 for new µ 0 : ( u 0 , 0 ∀ ζ N ∈ H N 0 := span { h 1 N 0 , . . . , h N 0 N ( µ 0 ) , ζ N ) H = ( µ 0 , ζ N ) H N 0 } ◮ matrix-vector form: M init N 0 α 0 ( µ 0 ) = b ( µ 0 ) (projection) � � 0 , h j with M init ( µ i 1 ≤ i , j ≤ N 0 , α 0 ( µ 0 ) = ( α i N 0 = N 0 ) H 0 ( µ 0 )) 1 ≤ i ≤ N 0

  36. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 } ◮ RB-approximation u 0 , 0 N ( µ 0 ) ∈ I N 0 for new µ 0 : ( u 0 , 0 ∀ ζ N ∈ H N 0 := span { h 1 N 0 , . . . , h N 0 N ( µ 0 ) , ζ N ) H = ( µ 0 , ζ N ) H N 0 } ◮ matrix-vector form: M init N 0 α 0 ( µ 0 ) = b ( µ 0 ) (projection) � � 0 , h j with M init ( µ i 1 ≤ i , j ≤ N 0 , α 0 ( µ 0 ) = ( α i N 0 = N 0 ) H 0 ( µ 0 )) 1 ≤ i ≤ N 0 ◮ Note: No affine decomposition: ( µ 0 , ζ N ) H online! ◮ approximate µ 0 by µ M 0 ( � ‘standard’ RBM with M parameters) ◮ ( µ 0 , ζ N ) H may be ‘known’ (e.g. Fourier, wavelets, ...)

  37. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 } ◮ RB-approximation u 0 , 0 N ( µ 0 ) ∈ I N 0 for new µ 0 : ( u 0 , 0 ∀ ζ N ∈ H N 0 := span { h 1 N 0 , . . . , h N 0 N ( µ 0 ) , ζ N ) H = ( µ 0 , ζ N ) H N 0 } ◮ matrix-vector form: M init N 0 α 0 ( µ 0 ) = b ( µ 0 ) (projection) � � 0 , h j with M init ( µ i 1 ≤ i , j ≤ N 0 , α 0 ( µ 0 ) = ( α i N 0 = N 0 ) H 0 ( µ 0 )) 1 ≤ i ≤ N 0 ◮ Note: No affine decomposition: ( µ 0 , ζ N ) H online! ◮ approximate µ 0 by µ M 0 ( � ‘standard’ RBM with M parameters) ◮ ( µ 0 , ζ N ) H may be ‘known’ (e.g. Fourier, wavelets, ...) ◮ compute S 0 N 0 e.g. by POD

  38. page 15/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 2/3 1st step: Initial condiition ◮ construct I N 0 ⊂ I M ⊂ H of (small) dimension N 0 by snapshots S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , I N 0 := span { S 0 N 0 } ◮ RB-approximation u 0 , 0 N ( µ 0 ) ∈ I N 0 for new µ 0 : ( u 0 , 0 ∀ ζ N ∈ H N 0 := span { h 1 N 0 , . . . , h N 0 N ( µ 0 ) , ζ N ) H = ( µ 0 , ζ N ) H N 0 } ◮ matrix-vector form: M init N 0 α 0 ( µ 0 ) = b ( µ 0 ) (projection) � � 0 , h j with M init ( µ i 1 ≤ i , j ≤ N 0 , α 0 ( µ 0 ) = ( α i N 0 = N 0 ) H 0 ( µ 0 )) 1 ≤ i ≤ N 0 ◮ Note: No affine decomposition: ( µ 0 , ζ N ) H online! ◮ approximate µ 0 by µ M 0 ( � ‘standard’ RBM with M parameters) ◮ ( µ 0 , ζ N ) H may be ‘known’ (e.g. Fourier, wavelets, ...) ◮ compute S 0 N 0 e.g. by POD ◮ also adaptive (Steih, U.)

  39. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } ,

  40. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D

  41. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D u j := ˘ u η ( µ j ) ∈ ˘ ◮ compute ˘ X η (offline 2nd step — modified rhs) u j : j = 1 , . . . , N 1 } and set ˘ X N 1 := span { ˘

  42. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D u j := ˘ u η ( µ j ) ∈ ˘ ◮ compute ˘ X η (offline 2nd step — modified rhs) u j : j = 1 , . . . , N 1 } and set ˘ X N 1 := span { ˘ ◮ for new µ = ( µ 0 , µ 1 ) define (stable) test space Z N 1 ( µ 1 ) ∈ Z δ e.g. by supremizers

  43. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D u j := ˘ u η ( µ j ) ∈ ˘ ◮ compute ˘ X η (offline 2nd step — modified rhs) u j : j = 1 , . . . , N 1 } and set ˘ X N 1 := span { ˘ ◮ for new µ = ( µ 0 , µ 1 ) define (stable) test space Z N 1 ( µ 1 ) ∈ Z δ e.g. by supremizers ◮ RB approximation: u N ( µ ) := u 0 N ( µ 0 ) + ˘ u N ( µ ) , u N ( µ ) ∈ ˘ where ˘ X N 1 solves u N ( µ ) , z N ) = ˘ f ( u 0 b 1 ( µ 1 ; ˘ N ( µ 0 ) , µ 1 ; z N ) ∀ z N ∈ Z N 1 ( µ 1 ) .

  44. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D u j := ˘ u η ( µ j ) ∈ ˘ ◮ compute ˘ X η (offline 2nd step — modified rhs) u j : j = 1 , . . . , N 1 } and set ˘ X N 1 := span { ˘ ◮ for new µ = ( µ 0 , µ 1 ) define (stable) test space Z N 1 ( µ 1 ) ∈ Z δ e.g. by supremizers ◮ RB approximation: u N ( µ ) := u 0 N ( µ 0 ) + ˘ u N ( µ ) , u N ( µ ) ∈ ˘ where ˘ X N 1 solves u N ( µ ) , z N ) = ˘ f ( u 0 b 1 ( µ 1 ; ˘ N ( µ 0 ) , µ 1 ; z N ) ∀ z N ∈ Z N 1 ( µ 1 ) . ◮ NO time-marching!

  45. page 16/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time RBM 3/3 2nd step: Evolution with homogeneous initial conditions ◮ extend the ‘space-only’ function u 0 , 0 N ( µ 0 ) ∈ I N 0 ⊂ H 1 (Ω) N ( µ 0 ) := σ 0 ⊗ u 0 , 0 to a space-time function u 0 N ( µ 0 ) ∈ L 2 ( I ; H 1 (Ω)) do this for µ i 0 ∈ S 0 N 0 := { µ i 0 : 1 ≤ i ≤ N 0 } , ◮ construct RB space ˘ X N 1 ⊂ ˘ X η N 1 = { µ j = ( µ i 0 , µ j by snapshots S 1 1 ) : 1 ≤ j ≤ N 1 } ⊂ S 0 N 0 × D 1 ⊂ D u j := ˘ u η ( µ j ) ∈ ˘ ◮ compute ˘ X η (offline 2nd step — modified rhs) u j : j = 1 , . . . , N 1 } and set ˘ X N 1 := span { ˘ ◮ for new µ = ( µ 0 , µ 1 ) define (stable) test space Z N 1 ( µ 1 ) ∈ Z δ e.g. by supremizers ◮ RB approximation: u N ( µ ) := u 0 N ( µ 0 ) + ˘ u N ( µ ) , u N ( µ ) ∈ ˘ where ˘ X N 1 solves u N ( µ ) , z N ) = ˘ f ( u 0 b 1 ( µ 1 ; ˘ N ( µ 0 ) , µ 1 ; z N ) ∀ z N ∈ Z N 1 ( µ 1 ) . ◮ NO time-marching! ◮ b 1 and ˘ f are tensor products!

  46. page 17/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Greedy for initial value ◮ determine by POD or adaptive approximation

  47. page 17/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Greedy for initial value ◮ determine by POD or adaptive approximation ... or ◮ ∆ 0 N 0 ( µ 0 ) := � µ 0 − µ N 0 � H Greedy for initial value train ⊂ D 0 be the training set of initial values, tol 0 > 0 a tolerance. 1: Let M 0 2: Choose µ 1 0 ∈ M 0 train , S 0 1 := { µ 1 0 } 3: for N 0 = 1 , . . . , N max do 0 Compute u N 0 ; 0 = u 0 , 0 δ ( µ N 0 ) ∈ I M as in (3) % Offline 1st step 4: 0 µ N 0 + 1 train ∆ 0 = arg max µ 0 ∈ M 0 N 0 ( µ 0 ) 5: 0 ) < tol 0 then Stop end if N 0 ( µ N 0 + 1 if ∆ 0 6: 0 N 0 ∪ { µ N 0 + 1 S 0 N 0 + 1 := S 0 } 7: 0 8: end for N 0 := span { u i ; 0 := σ 0 ⊗ u i ; 0 9: X 0 : 1 ≤ i ≤ N 0 } 0

  48. page 18/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Greedy for evolution ◮ ∆ 1 N 1 ( µ ) := β − 1 δ � g 1 ( µ 1 ) − b 1 ( µ 1 ; u N ( µ ) , · ) � Y ′ η Greedy for evolution train be the training set, tol 1 > 0 a tolerance. 1: Let M train ⊂ S 0 N 0 × M 1 train , µ 1 , 1 := ( µ 1 2: Choose µ 1 , 1 0 , µ 1 , 1 ∈ M 1 1 ) , S 1 1 := { µ 1 , 1 } 1 3: Compute u 1 , 1 ; 1 = ˘ u δ ( µ 1 , 1 ) ∈ ˘ X δ , N 1 := 1 4: for i = 1 , . . . , N 0 do for j = 1 , . . . , N max do 5: 1 0 , µ 1 )) ; µ i , j := ( µ i µ j 0 , µ j train ∆ 1 N 1 (( µ i 1 = arg max µ 1 ∈ M 1 1 ) 6: N 1 ( µ i , j ) < tol 1 then N i , 1 := j end for j end if if ∆ 1 7: N 1 := N 1 + 1, 8: Compute u i , j ; 1 = ˘ u δ ( µ i , j ) ∈ ˘ X δ % Offline 2nd step (e.g. C-N) 9: S 1 N 1 + 1 := S 1 N 1 ∪ { µ i , j } 10: end for 11: 12: end for

  49. page 19/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Numerical Results ◮ Heston model ◮ model payoff µ 0 by Bezier curves ◮ POD for initial value 0 10 10 − 1 RB solution (internal / initial) 10 − 2 1 2 3 4 5 6 7 Extended initial values

  50. page 20/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Space-Time RBM with variable initial condition Space-Time Errors Erros vs. N 1 for different N 0 ( P = 1 out of 5) (for different parameter selections)

  51. page 21/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | CDOs / HTucker format Background and Motivation 1 Space-Time RBM with variable initial condition 2 CDOs / HTucker format 3 Parabolic Variational Inequalities 4 PPDEs with stochastic parameters (PSPDEs) 5 Summary and outlook 6

  52. page 22/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | CDOs / HTucker format Recall: Additional challenges ◮ several options/assets (WASC, CDOs): � many coupled PDEs, high (space) dimension ◮ American options: variational inequalities (Haasdonk, Salomon, Wohlmuth; Glas, U.) ◮ stochastic coefficients ◮ jump models (Lévy): integral operators, PIDEs (Schwab et al., Kestler, ...) ◮ problems on infinite domains ( S ∈ [ 0 , ∞ ) ) (Kestler, U.) ◮ ...

  53. page 23/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | CDOs / HTucker format CDO pricing model CDO model: N = 2 n coupled PDEs: j ∈ { 1 , . . . N } = N t ( t , y ) = − 1 u j 2 ∇ · ( B ( t ) ∇ u j ( t , y )) − α T ( t ) ∇ u j ( t , y ) + r ( t , y ) u j ( t , y ) � q j , k ( t , y )( a j , k ( t , y ) + u k ( t , y ) − u j ( t , y )) − c j ( t , y ) , − (6a) k ∈N\{ j } u ( t , y ) = 0 , t ∈ ( 0 , T ) , y ∈ ∂ Ω , (6b) u ( T , y ) = ( u 0 T ( y ) , . . . , u N − 1 ( y )) T , y ∈ Ω , (6c) T ◮ CDOs are one reason for the financial crisis ◮ coupling terms q j , k hardly known ◮ goal: find ways to control the market (sensitivities, restrictions to parameters, ...)

  54. page 24/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | CDOs / HTucker format CDO Space-time variational formulation (Kiesel, Rupp, U.) CDO model: N = 2 n coupled PDEs: j ∈ { 1 , . . . N } = N t ( t , y ) = − 1 u j 2 ∇ · ( B ( t ) ∇ u j ( t , y )) − α T ( t ) ∇ u j ( t , y ) + r ( t , y ) u j ( t , y ) � q j , k ( t , y )( a j , k ( t , y ) + u k ( t , y ) − u j ( t , y )) − c j ( t , y ) , − k ∈N\{ j } u ( T , y ) = ( u 0 T ( y ) , . . . , u N − 1 ( y )) T , y ∈ Ω , u ( t , y ) = 0 , t ∈ ( 0 , T ) , y ∈ ∂ Ω , T 0 (Ω) N ) ∩ H 1 ( 0 , T ; H − 1 (Ω) N ) L 2 ( 0 , T ; H 1 X := L 2 ( 0 , T ; H 1 0 (Ω) N ) × L 2 (Ω) N , Y := v = ( v 1 , v 2 ) � T b ( µ ; u , v ) := [( u t ( t ) , v 1 ) 0 ;Ω + a ( µ ; u ( t ) , v 1 )] dt + ( u ( T ) , v 2 ) 0 ;Ω 0 � T f ( v ) := ( f ( t ) , v 1 ( t )) 0 ;Ω + ( u T , v 2 ) 0 ;Ω 0 CDO space-time formulation u ∈ X : b ( µ ; u , v ) = f ( v ) ∀ v = ( v 1 , v 2 ) ∈ Y . (7)

  55. page 25/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | CDOs / HTucker format HTucker simulation of CDOs ◮ use multiwavelets in space ◮ use HTucker-format (Donovan, Geronimo, Hardin; Dijkema, Schwab, Stevenson) (Hackbusch, Kühn, Grasedyck, Kressner, ...) ◮ obtain equivalent ℓ 2 -problem ( → talk of R. Schneider) ( → talk of W. Dahmen) ◮ n : number of assets ◮ can be written in tensor form ◮ � N = 2 n equations (also space/time) state 3 4000 state 2 state 1 state 0 3500 3000 12 2500 8 u runtime[seconds] 4 2000 0 1500 0.8 1000 0.6 0.4 y 500 0 0.2 0.2 0.4 0.6 1 0 0.8 t 0 0 20 40 60 80 100 120 140 number�of�assists�in�the�portfolio

  56. page 26/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Background and Motivation 1 Space-Time RBM with variable initial condition 2 CDOs / HTucker format 3 Parabolic Variational Inequalities 4 PPDEs with stochastic parameters (PSPDEs) 5 Summary and outlook 6

  57. page 27/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Recall: Additional challenges ◮ several options/assets (WASC, CDOs): � many coupled PDEs, high (space) dimension ◮ American options: variational inequalities (Haasdonk, Salomon, Wohlmuth; Glas, U.) ◮ stochastic coefficients ◮ jump models (Lévy): integral operators, PIDEs (Schwab et al., Kestler, ...) ◮ problems on infinite domains ( S ∈ [ 0 , ∞ ) ) (Kestler, U.) ◮ ...

  58. page 28/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Parabolic Variational Inequality PVI( µ ) (Glas, U.) American / swing options � obstacle problem: ( → talks of K. Veroy, J. Salomon) Parameterized Parabolic Variational Inequality: For µ ∈ D , find u ( µ ; t ) ∈ K ( t ) , s.t. for all v ( t ) ∈ K ( t ) , t ∈ ( 0 , T ) a . e . � u t ( µ ; t ) , v ( t ) − u ( µ ; t ) � V ′ × V + a ( µ ; u ( µ ; t ) , v ( t ) − u ( µ ; t )) � f ( µ ; v ( t ) − u ( µ ; t )) where ◮ V ֒ → H Hilbert Spaces ◮ a ( µ ; · , · ) : D × V × V → R (possibly non-coercive) ◮ K ( t ) ⊂ V closed and convex set ◮ f ( µ ; · ) : V → R

  59. page 28/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Parabolic Variational Inequality PVI( µ ) (Glas, U.) American / swing options � obstacle problem: ( → talks of K. Veroy, J. Salomon) Parameterized Parabolic Variational Inequality: For µ ∈ D , find u ( µ ; t ) ∈ K ( t ) , s.t. for all v ( t ) ∈ K ( t ) , t ∈ ( 0 , T ) a . e . � u t ( µ ; t ) , v ( t ) − u ( µ ; t ) � V ′ × V + a ( µ ; u ( µ ; t ) , v ( t ) − u ( µ ; t )) � f ( µ ; v ( t ) − u ( µ ; t )) Transfer into saddle point problem: ◮ W Hilbert space, M ⊂ W convex cone ◮ K ( t ) = { v ∈ V | c ( t ; v , η ) � g ( µ ; η ) , η ∈ M } For µ in D , find ( u ( µ ) , λ ( µ )) ∈ V × M such that for t ∈ ( 0 , T ) a.e. � u t , v � V ′ × V + a ( µ ; u ( µ ) , v ) + c ( t ; v , λ ( µ )) = f ( µ ; v ) , v ∈ V c ( t ; u ( µ ) , η − λ ( µ )) � g ( µ ; η − λ ( µ )) , η ∈ M .

  60. page 29/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Space-Time Formulation of PVIs � u t ( t ) , v ( t ) − u ( t ) � + a ( µ ; u ( t ) , v ( t ) − u ( t )) � f ( µ ; v ( t ) − u ( t )) ∀ v ( t ) ∈ V , t ∈ I a.e.

  61. page 29/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Space-Time Formulation of PVIs � u t ( t ) , v ( t ) − u ( t ) � + a ( µ ; u ( t ) , v ( t ) − u ( t )) � f ( µ ; v ( t ) − u ( t )) ∀ v ( t ) ∈ V , t ∈ I a.e. ◮ X := { w ∈ L 2 ( I ; V ) : ˙ w ∈ L 2 ( I ; V ′ ) , w ( 0 ) = 0 } � T � T � T � u t , v − u � dt + a ( µ ; u , v − u ) dt � f ( µ ; v − u ) dt ∀ v ∈ X 0 0 0

  62. page 29/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Space-Time Formulation of PVIs � u t ( t ) , v ( t ) − u ( t ) � + a ( µ ; u ( t ) , v ( t ) − u ( t )) � f ( µ ; v ( t ) − u ( t )) ∀ v ( t ) ∈ V , t ∈ I a.e. ◮ X := { w ∈ L 2 ( I ; V ) : ˙ w ∈ L 2 ( I ; V ′ ) , w ( 0 ) = 0 } � T � T � T � u t , v − u � dt + a ( µ ; u , v − u ) dt � f ( µ ; v − u ) dt ∀ v ∈ X 0 0 0 � T � T � T � u t , v − u � dt + a ( µ ; u , v − u ) dt f ( µ ; v − u ) dt ∀ v ∈ X � 0 0 0 � �� � � �� � � ˜ b ( µ ; u , v − u ) f ( v − u ; µ ) ∀ v ∈ X

  63. page 30/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Petrov-Galerkin Problem Space-time Saddle Point Problem: For µ in D , find ( u ( µ ) , λ ( µ )) ∈ X × M ( M ⊆ C ( I ; M ) ) such that b ( µ ; u ( µ ) , v ) + c ( v , λ ( µ )) = ˜ f ( µ ; v ) , v ∈ Y := L 2 ( I ; V ) c ( u ( µ ) , η − λ ( µ )) � g ( µ ; η − λ ( µ )) , η ∈ M . ◮ Recall X ֒ → C ( I ; H )

  64. page 30/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Petrov-Galerkin Problem Space-time Saddle Point Problem: For µ in D , find ( u ( µ ) , λ ( µ )) ∈ X × M ( M ⊆ C ( I ; M ) ) such that b ( µ ; u ( µ ) , v ) + c ( v , λ ( µ )) = ˜ f ( µ ; v ) , v ∈ Y := L 2 ( I ; V ) c ( u ( µ ) , η − λ ( µ )) � g ( µ ; η − λ ( µ )) , η ∈ M . ◮ Recall X ֒ → C ( I ; H ) ◮ (Semi-)Norms: ◮ � v � Y := � v � 2 L 2 ( I ; V ) ◮ � v � 2 X := � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ )

  65. page 30/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Petrov-Galerkin Problem Space-time Saddle Point Problem: For µ in D , find ( u ( µ ) , λ ( µ )) ∈ X × M ( M ⊆ C ( I ; M ) ) such that b ( µ ; u ( µ ) , v ) + c ( v , λ ( µ )) = ˜ f ( µ ; v ) , v ∈ Y := L 2 ( I ; V ) c ( u ( µ ) , η − λ ( µ )) � g ( µ ; η − λ ( µ )) , η ∈ M . ◮ Recall X ֒ → C ( I ; H ) ◮ (Semi-)Norms: ◮ � v � Y := � v � 2 L 2 ( I ; V ) ◮ � v � 2 X := � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ ) ◮ | | 2 X := � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ ) + � v ( T ) � 2 | | v | | (U., Patera) H

  66. page 30/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Petrov-Galerkin Problem Space-time Saddle Point Problem: For µ in D , find ( u ( µ ) , λ ( µ )) ∈ X × M ( M ⊆ C ( I ; M ) ) such that b ( µ ; u ( µ ) , v ) + c ( v , λ ( µ )) = ˜ f ( µ ; v ) , v ∈ Y := L 2 ( I ; V ) c ( u ( µ ) , η − λ ( µ )) � g ( µ ; η − λ ( µ )) , η ∈ M . ◮ Recall X ֒ → C ( I ; H ) ◮ (Semi-)Norms: ◮ � v � Y := � v � 2 L 2 ( I ; V ) ◮ � v � 2 X := � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ ) ◮ | | 2 X := � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ ) + � v ( T ) � 2 | | v | | (U., Patera) H ◮ � v � 2 X := � v � 2 L 2 ( I ; V ) + � v ( T ) � 2 H (weaker than | | |·| | | X , � · � X ) ( � v � 2 X := � v � 2 L 2 ( I ; V ) + � v ( T ) � 2 H < � v � 2 L 2 ( I ; V ) + � v t � 2 L 2 ( I ; V ′ ) + � v ( T ) � 2 | 2 H = | | | v | | X )

  67. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c �

  68. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive

  69. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive with coercivity constant α w > 0, i.e., b ( µ ; v , v ) ≥ α w � v � 2 X , v ∈ X ( � v � X < | | | v | | | X )

  70. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive with coercivity constant α w > 0, i.e., b ( µ ; v , v ) ≥ α w � v � 2 X , v ∈ X ( � v � X < | | | v | | | X ) Proof: (in the coercive case) � T � T b ( µ ; v , v ) = � v t , v � dt + a ( µ ; v , v ) dt 0 0 � T � 1 2 � v ( T ) � 2 ( α a � v ( t ) � 2 V − λ a � v ( t ) � 2 H + H ) dt 0 � 1 2 � v ( T ) � 2 H + ( α a − λ a ̺ 2 ) � v � 2 Y � min { 1 / 2 , α a − λ a ̺ 2 } � v � 2 X

  71. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive with coercivity constant α w > 0, i.e., b ( µ ; v , v ) ≥ α w � v � 2 X , v ∈ X � ( � v � X < | | | v | | | X ) (A3) The form c ( · , · ) is inf-sup-stable on Y × W , i.e. ∃ β c > 0: c ( v , q ) sup � β c � q � W , ∀ q ∈ W ( ⊂ L 2 ( I ; W )) � v � Y � q � W v ∈Y

  72. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive with coercivity constant α w > 0, i.e., b ( µ ; v , v ) ≥ α w � v � 2 X , v ∈ X � ( � v � X < | | | v | | | X ) (A3) The form c ( · , · ) is inf-sup-stable on Y × W , i.e. ∃ β c > 0: c ( v , q ) sup � β c � q � W , ∀ q ∈ W ( ⊂ L 2 ( I ; W )) � v � Y � q � W v ∈Y (A4) The form b ( µ ; · , · ) is symmetrically bounded i.e., ∃ γ s < ∞ : b ( µ ; v , w ) � γ s � v � X | | | w | | | X for v , w ∈ X � ( integration by parts )

  73. page 31/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Preliminaries Properties/Assumptions: (A1) Bilinear forms b ( µ ; · , · ) , c ( · , · ) bounded with constants γ b , γ c � (A2) The form b ( µ ; · , · ) is weakly coercive with coercivity constant α w > 0, i.e., b ( µ ; v , v ) ≥ α w � v � 2 X , v ∈ X � ( � v � X < | | | v | | | X ) (A3) The form c ( · , · ) is inf-sup-stable on Y × W , i.e. ∃ β c > 0: c ( v , q ) sup � β c � q � W , ∀ q ∈ W ( ⊂ L 2 ( I ; W )) � v � Y � q � W v ∈Y (A4) The form b ( µ ; · , · ) is symmetrically bounded i.e., ∃ γ s < ∞ : b ( µ ; v , w ) � γ s � v � X | | | w | | | X for v , w ∈ X � ( integration by parts ) • (A1-A4) � well-posedness of the problem (Glas, U.; Lions/Stampacchia)

  74. page 32/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 1/3 Residuals (space/time): r N ( µ ; v ) := b ( µ ; u − u N , v ) + c ( v , p − p N ) , v ∈ Y , s N ( µ ; q ) := c ( u N , q ) − g ( µ ; q ) , q ∈ W ,

  75. page 32/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 1/3 Residuals (space/time): r N ( µ ; v ) := b ( µ ; u − u N , v ) + c ( v , p − p N ) , v ∈ Y , s N ( µ ; q ) := c ( u N , q ) − g ( µ ; q ) , q ∈ W , Projection: (from the stationary case; [HSW]) ◮ π : W → M orthogonal with respect to �· , ·� π on W . � ◮ Induced norm on W , � η � π := � η, η � π , ◮ c π � η � W � � η � π � C π � η � W ◮ extend that to space/time: W , M

  76. page 32/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 1/3 Residuals (space/time): r N ( µ ; v ) := b ( µ ; u − u N , v ) + c ( v , p − p N ) , v ∈ Y , s N ( µ ; q ) := c ( u N , q ) − g ( µ ; q ) , q ∈ W , Projection: (from the stationary case; [HSW]) ◮ π : W → M orthogonal with respect to �· , ·� π on W . � ◮ Induced norm on W , � η � π := � η, η � π , ◮ c π � η � W � � η � π � C π � η � W ◮ extend that to space/time: W , M Primal/Dual Error Relation c ( v , q ) Properties (A1)-(A4) and inf q ∈W sup ≥ β c > 0 ( � ) � v � X � q � W v ∈X do not yield a primal/dual error relation like: � p − p N � W ≤ 1 ( | | | r N | | | X ′ + γ s � u − u N � X ) . β 1

  77. page 33/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 2/3 Assumption (D): Assume the existence of an invertible mapping D : M → X such that (1) c ( Dp , q ) = � v , q � W , p , q ∈ M (2) ∃ C D , s.t. | | | Dp | | | X � C D � p � W ◮ controls temporal movement/change of obstacle ◮ obstacle case: Riesz operator

  78. page 33/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 2/3 Assumption (D): Assume the existence of an invertible mapping D : M → X such that (1) c ( Dp , q ) = � v , q � W , p , q ∈ M (2) ∃ C D , s.t. | | | Dp | | | X � C D � p � W ◮ controls temporal movement/change of obstacle ◮ obstacle case: Riesz operator Primal/dual error relation If (A1)-(A4), inf-sup and (D) hold, we have � p − p N � W � C D ( | | | r N | | | X ′ + γ s � u − u N � X ) .

  79. page 33/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 2/3 Assumption (D): Assume the existence of an invertible mapping D : M → X such that (1) c ( Dp , q ) = � v , q � W , p , q ∈ M (2) ∃ C D , s.t. | | | Dp | | | X � C D � p � W ◮ controls temporal movement/change of obstacle ◮ obstacle case: Riesz operator Primal/dual error relation If (A1)-(A4), inf-sup and (D) hold, we have � p − p N � W � C D ( | | | r N | | | X ′ + γ s � u − u N � X ) . Note: ◮ error w.r.t. weaker (semi-)norm � · � X , not | | |·| | | X or � · � X

  80. page 33/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 2/3 Assumption (D): Assume the existence of an invertible mapping D : M → X such that (1) c ( Dp , q ) = � v , q � W , p , q ∈ M (2) ∃ C D , s.t. | | | Dp | | | X � C D � p � W ◮ controls temporal movement/change of obstacle ◮ obstacle case: Riesz operator Primal/dual error relation If (A1)-(A4), inf-sup and (D) hold, we have � p − p N � W � C D ( | | | r N | | | X ′ + γ s � u − u N � X ) . Note: ◮ error w.r.t. weaker (semi-)norm � · � X , not | | |·| | | X or � · � X ◮ (D) poses requirement on the movement of the obstacle (in time)

  81. page 33/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 2/3 Assumption (D): Assume the existence of an invertible mapping D : M → X such that (1) c ( Dp , q ) = � v , q � W , p , q ∈ M (2) ∃ C D , s.t. | | | Dp | | | X � C D � p � W ◮ controls temporal movement/change of obstacle ◮ obstacle case: Riesz operator Primal/dual error relation If (A1)-(A4), inf-sup and (D) hold, we have � p − p N � W � C D ( | | | r N | | | X ′ + γ s � u − u N � X ) . Note: ◮ error w.r.t. weaker (semi-)norm � · � X , not | | |·| | | X or � · � X ◮ (D) poses requirement on the movement of the obstacle (in time) ◮ choice of c ( · , · ) � enforcement of obstacle (point wise, average, ...)

  82. page 34/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities RBM: Error/Residual estimate 3/3 Error/residual estimate Let (A1)-(A4), inf-sup, (D) hold. Then � u − u N � X : = ∆ u = c 1 + ( c 2 1 + c 2 ) 1 / 2 � p − p N � W : = ∆ p = C D ( | | | r N | | | X ′ + γ s ∆ u ) 1 c 1 : = ( � r N � X ′ + γ s C D � π (ˆ s N ) � W ) 2 α w c 2 : = 1 ( C D | | | r N | | | X ′ � π (ˆ s N ) � W + � p N , π (ˆ s N ) � W ) α w

  83. page 35/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Numerical example: 1-D Heat Conduction Wire with two heat conductivities: ◮ D := [ 0 , 1 ] , D 1 := [ 0 , 1 2 ) , D 2 := [ 1 2 , 1 ] g ◮ t ∈ [ 0 , T ] 1 ◮ µ := µ 1 χ [ 0 , 1 2 ) + µ 2 χ [ 1 2 0 1 2 , 1 ] µ 1 µ 2 Strong Formulation:  u t − ∇ ( µ ∇ u ) � f , x ∈ D , t ∈ [ 0 , T ]     µ∂ u   ∂ n = 1 , x ∈ { 0 } , t ∈ [ 0 , T ]  x ∈ { 1 } , t ∈ [ 0 , T ] u = 0 ,      x ∈ D u ( x , 0 ) = 0 ,

  84. page 36/54 Reduced Basis Methods for Option Pricing | Paristech, 14.-18.04.2014 | Karsten Urban | Parabolic Variational Inequalities Detailed Solution with obstacle ◮ f = 1 ◮ Obstacle constant 0 . 6 , 0 . 4 , 0 . 2 ◮ D = [ 0 , 1 ] , # intervals = 10 ◮ T = 0 . 1, # intervals = 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend