a reduced basis method for multiple electromagnetic
play

A Reduced Basis Method for Multiple Electromagnetic Scattering in - PowerPoint PPT Presentation

A Reduced Basis Method for Multiple Electromagnetic Scattering in Three Dimensions "Numerical methods for high-dimensional problems Ecole des Ponts Paristech, April 14th-18th 2014 Benjamin Stamm LJLL, Paris 6 and CNRS Thursday, April


  1. A Reduced Basis Method for Multiple Electromagnetic Scattering in Three Dimensions "Numerical methods for high-dimensional problems” Ecole des Ponts Paristech, April 14th-18th 2014 Benjamin Stamm LJLL, Paris 6 and CNRS Thursday, April 24, 14

  2. Outline • Problem setting • Single scatterer RBM • RBM for multiple scattering problem • Numerical results In collaboration with • M. Fares (CERFACS, Toulouse) • M. Ganesh (Colorado School of Mines) • J. Hesthaven (EPFL) • Y. Maday (Paris 6 and Brown University) • S. Zhang (City University of Hong Kong) Thursday, April 24, 14

  3. Problem setting Thursday, April 24, 14

  4. Physical problem/Geometrical Configuration [in 3D] E i ( x ) D i D J D 1 Incident plane wave impinging onto collection of J perfectly conducting obstacles D 1 , . . . , D J . Thursday, April 24, 14

  5. Physical problem/Geometrical Configuration [in 3D] E i ( x ) D i D J D 1 ⇒ Scattered field E s ( x ) Incident plane wave impinging onto collection of J perfectly conducting obstacles D 1 , . . . , D J . Thursday, April 24, 14

  6. Parametrization The system is parametrized by: • The wave number k , • The angle and polarization of the incident wave E i ( x ; k, p , ˆ k ) = − p e ik x · ˆ k ( θ , φ ) , • The location and shape of the obstacles: Thursday, April 24, 14

  7. Parametrization The system is parametrized by: • The wave number k , • The angle and polarization of the incident wave E i ( x ; k, p , ˆ k ) = − p e ik x · ˆ k ( θ , φ ) , • The location and shape of the obstacles: T i (ˆ x ) = γ i B i ˆ x + b i Reference shape: D i ˆ y y ˆ D ˆ x x Thursday, April 24, 14

  8. Parametrization The system is parametrized by: • The wave number k , • The angle and polarization of the incident wave E i ( x ; k, p , ˆ k ) = − p e ik x · ˆ k ( θ , φ ) , • The location and shape of the obstacles: T i (ˆ x ) = γ i B i ˆ x + b i Reference shape: D i ˆ y y ˆ D ˆ x The a ffi ne transformation T i includes: x B i ∈ SO (3): rotation γ i ∈ R + : stretching b i ∈ R 3 : translation Thursday, April 24, 14

  9. Parametrization The system is parametrized by: • The wave number k , • The angle and polarization of the incident wave E i ( x ; k, p , ˆ k ) = − p e ik x · ˆ k ( θ , φ ) , • The location and shape of the obstacles: T i (ˆ x ) = γ i B i ˆ x + b i Reference shape: D i ˆ y y ˆ D ˆ x The a ffi ne transformation T i includes: x B i ∈ SO (3): rotation γ i ∈ R + : stretching b i ∈ R 3 : translation Parameter: µ = ( k, ˆ � ) ∈ P ⊂ R 5+7 J k , p , b 1 , B 1 , γ 1 � , . . . , b J , B J , γ J � �� � �� Thursday, April 24, 14

  10. Governing equations (time-harmonic ansatz) Assume that the free space is a homogenous media with magnetic permeability µ and electrical permittivity ε . The total electric field E = E i + E s ∈ H (curl , Ω ) satisfies curl curl E − k 2 E = 0 in Ω , Maxwell E × n = 0 on Γ , boundary condition � � � � � curl E s ( x ) × | x | − ik E s ( x ) 1 � = O as | x | → ∞ . Silver-M¨ uller radiation condition x � � | x | Ω = R 3 \ ∪ J i =1 D i . Γ is the collection of all surfaces: Γ = ∪ J i =1 ∂ D i . see book of [Colton,Kress], [Nedelec] Thursday, April 24, 14

  11. Variational formulation of the Electric Field Integral Equation (EFIE) Change the unknown to be u : Electric currant on collection of surfaces. For any fixed µ ∈ P , find u ( µ ) ∈ V s.t. a [ u ( µ ) , v ; µ ] = f [ v ; µ ] , ∀ v ∈ V with � � � � u ( y ) · v ( x ) − 1 a [ u , v ; µ ] = ikZ G k ( x , y ) k 2 div y u ( y )div x v ( x ) d y d x Γ ( µ ) Γ ( µ ) � E i ( y ; k, p , ˆ f [ v ; µ ] = − k ) · v ( y ) d y Γ ( µ ) The scattered electric field E s is then uniquely determined by the electric currant u . Thursday, April 24, 14

  12. Variational formulation of the Electric Field Integral Equation (EFIE) Change the unknown to be u : Electric currant on collection of surfaces. For any fixed µ ∈ P , find u ( µ ) ∈ V s.t. a [ u ( µ ) , v ; µ ] = f [ v ; µ ] , ∀ v ∈ V with � � � � u ( y ) · v ( x ) − 1 a [ u , v ; µ ] = ikZ G k ( x , y ) k 2 div y u ( y )div x v ( x ) d y d x Γ ( µ ) Γ ( µ ) � E i ( y ; k, p , ˆ f [ v ; µ ] = − k ) · v ( y ) d y Γ ( µ ) The kernel function is given by e ik | x − y | G k ( x , y ) = 4 π | x − y | The scattered electric field E s is then uniquely determined by the electric currant u . Thursday, April 24, 14

  13. Output of interest: Radar Cross Section (RCS) • Describes pattern/energy of electrical field at infinity • Functional of the current on body d ] = ikZ � d ) e − ik x · ˆ A ∞ [ u ; µ , ˆ d × ( u ( x ) × ˆ ˆ d d x 4 π Γ � � | A ∞ [ u ; µ , ˆ d ] | 2 RCS[ u ; µ , ˆ d ] = 10 log 10 | E i ( x ; k, p , ˆ k ) | 2 where u : current on surface ˆ d : given directional unit vector Thursday, April 24, 14

  14. Output of interest: Radar Cross Section (RCS) • Describes pattern/energy of electrical field at infinity • Functional of the current on body d ] = ikZ � d ) e − ik x · ˆ A ∞ [ u ; µ , ˆ d × ( u ( x ) × ˆ ˆ d d x 4 π Γ � � | A ∞ [ u ; µ , ˆ d ] | 2 RCS[ u ; µ , ˆ d ] = 10 log 10 | E i ( x ; k, p , ˆ k ) | 2 where u : current on surface 40 ˆ d : given directional unit vector 30 20 RCS 10 0 -10 -20 0 1 2 3 4 5 6 φ rcs Thursday, April 24, 14

  15. Single obstacle scattering Thursday, April 24, 14

  16. Reduced Basis Method Reduced Basis Ansatz: V N = span { u δ ( µ 1 ) , . . . , u δ ( µ N ) } for some well-chosen sample points µ 1 , . . . , µ N . Thursday, April 24, 14

  17. Reduced Basis Method Reduced Basis Ansatz: V N = span { u δ ( µ 1 ) , . . . , u δ ( µ N ) } for some well-chosen sample points µ 1 , . . . , µ N . Example: 1 parameter: wavenumber k Di ff erent snapshots illustrated Thursday, April 24, 14

  18. Reduced Basis Method Reduced Basis Ansatz: V N = span { u δ ( µ 1 ) , . . . , u δ ( µ N ) } for some well-chosen sample points µ 1 , . . . , µ N . Example: 1 parameter: wavenumber k Di ff erent snapshots illustrated Question: How to find the sample points µ 1 , . . . , µ N such that V N ≈ M = { u δ ( µ ) : ∀ µ ∈ P } Thursday, April 24, 14

  19. Reduced Basis Method Reduced Basis Ansatz: V N = span { u δ ( µ 1 ) , . . . , u δ ( µ N ) } for some well-chosen sample points µ 1 , . . . , µ N . Example: 1 parameter: wavenumber k Di ff erent snapshots illustrated Question: How to find the sample points µ 1 , . . . , µ N such that V N ≈ M = { u δ ( µ ) : ∀ µ ∈ P } Answer: Greedy-algorithm Thursday, April 24, 14

  20. Affine decomposition for EFIE For any parameter value µ ∈ P , find u ( µ ) ∈ V s.t. a ( u ( µ ) , v ; µ ) = f ( v ; µ ) , ∀ v ∈ V with � � � � e ik | x − y | u ( x ) · v ( y ) − 1 a ( u , v ; µ ) = ikZ k 2 div Γ , x u ( x ) div Γ , y v ( y ) d x d y 4 π | x − y | Γ Γ � e ik x · ˆ k ( θ , φ ) v ( x ) d x f ( v ; µ ) = − p · Γ Thursday, April 24, 14

  21. Affine decomposition for EFIE For any parameter value µ ∈ P , find u ( µ ) ∈ V s.t. a ( u ( µ ) , v ; µ ) = f ( v ; µ ) , ∀ v ∈ V with � � � � e ik | x − y | u ( x ) · v ( y ) − 1 a ( u , v ; µ ) = ikZ k 2 div Γ , x u ( x ) div Γ , y v ( y ) d x d y 4 π | x − y | Γ Γ � e ik x · ˆ k ( θ , φ ) v ( x ) d x f ( v ; µ ) = − p · Γ Solution : Empirical Interpolation Method (EIM) (also based on a greedy algorithm) Given: A parametrized function g ( x ; µ ). Output: { µ q } Q q =1 such that Q S i m i l a r p r o b l e m � g ( x ; µ ) ≈ I Q ( g )( x ; µ ) = α g q ( µ ) g ( x ; µ q ) . formulation as for the q =1 RBM, but solutions are explicitly known (not solution to PDE) [Maday et al. 2004] (happy birthday!) Thursday, April 24, 14

  22. Affine decomposition for the EFIE Approximating Q e ik | x − y | q ( k ) e ikq | x − y | � α a 4 π | x − y | ≈ 4 π | x − y | q =1 Q e ik x · ˆ q ( µ ) e ik q x · ˆ � k ( θ , φ ) ≈ k ( θ q, φ q ) α f q =1 red: parameter-dependent, blue: parameter-independent. Thursday, April 24, 14

  23. Affine decomposition for the EFIE Approximating Q e ik | x − y | q ( k ) e ikq | x − y | � α a 4 π | x − y | ≈ 4 π | x − y | q =1 Q e ik x · ˆ q ( µ ) e ik q x · ˆ � k ( θ , φ ) ≈ k ( θ q, φ q ) α f q =1 results in � � � � e ik | x − y | e ik | x − y | 4 π | x − y | u ( x ) · v ( y ) d x d y − iZ a ( v , w ; µ ) = ikZ 4 π | x − y | div Γ , x u ( x ) div Γ , y v ( y ) d x d y k Γ Γ Γ Γ Q � � e ikq | x − y | � q ( k ) 4 π | x − y | u ( x ) · v ( y ) d x d y ikZ α a ≈ Γ Γ q =1 Q � � iZ α a q ( k ) e ikq | x − y | � 4 π | x − y | div Γ , x u ( x ) div Γ , y v ( y ) d x d y − k Γ Γ q =1 red: parameter-dependent, blue: parameter-independent. Thursday, April 24, 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend