reduced basis method for poisson boltzmann equation
play

Reduced Basis Method for Poisson-Boltzmann Equation Workshop in - PowerPoint PPT Presentation

Reduced Basis Method for Poisson-Boltzmann Equation Workshop in Industrial and Applied Mathematics, WIAM16 Cleophas Kweyu, Lihong Feng, Matthias Stein, Peter Benner September 01, 2016 Partners: Outline 1. Motivation 2. Introduction 3.


  1. Reduced Basis Method for Poisson-Boltzmann Equation Workshop in Industrial and Applied Mathematics, WIAM16 Cleophas Kweyu, Lihong Feng, Matthias Stein, Peter Benner September 01, 2016 Partners:

  2. Outline 1. Motivation 2. Introduction 3. Finite Difference Discretization 4. Essentials of Reduced Basis Method (RBM) 5. Numerical Results 6. Conclusions and Outlook Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 2/24

  3. Motivation Electrostatic Interactions [ Holst ’94 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complexity of a charged particle in solution surrounded by other charged particles. Figure: 2-D view of the 3-D Debye-H¨ uckel model. Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 3/24

  4. Introduction Poisson-Boltzmann Equation (PBE) [ Holst ’94 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PBE N m k 2 ( x ) sinh( u ( x )) = (4 π e 2 � ∇ u ( x )) + ¯ − � ∇ . ( ǫ ( x ) � c z i δ ( x − x i ) , in Ω ∈ R 3 , k B T ) i =1 Nm u ( x ) = ( e 2 z i e − k ( d − a i ) � c ǫ w (1 + ka i ) d on ∂ Ω , d = | x − x i | , k B T ) (1) i =1 u ( ∞ ) = 0 . k 2 = 8 π e 2 � N c I 1000 ǫ k B T , ( I = µ ) = 1 i =1 c i z 2 i , 2 u ( x ) = e c ψ ( x ) k B T . Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 4/24

  5. Introduction Poisson-Boltzmann Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � � ǫ 1 ≈ 2 if x ∈ Ω 1 0 if x ∈ Ω 1 or Ω 2 ¯ ǫ ( x ) = , k ( x ) = √ ǫ 3 k ǫ 2 (= ǫ 3 ) ≈ 80 if x ∈ Ω 2 or Ω 3 if x ∈ Ω 3 Figure: PBE coefficients Source: Introduction to Molecular Electrostatics with APBS, Robert Konecny Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 5/24

  6. Introduction Linearized PBE (LPBE) [ Fogolari et al ’99,Holst ’94 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assumption: ψ ( x ) ≪ 1. LPBE N m k 2 ( x ) u ( x ) = (4 π e 2 � − � ∇ . ( ǫ ( x ) � ∇ u ( x )) + ¯ c k B T ) z i δ ( x − x i ) , (2) i =1 Applications of the PBE and LPBE potential at the surface of a biomolecule - docking sites, potential outside the molecule - free energy of interaction, free energy of a biomolecule - biomolecular stability. Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 6/24

  7. Finite Difference Discretization Centered finite differences of LPBE [ Simakov2013 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 − 2 , j , k ( u i +1 , j , k − u i , j , k ) + 2 , j , k ( u i , j , k − u i − 1 , j , k ) − 2 , k ( u i , j +1 , k − u i , j , k ) dx 2 ǫ i + 1 dx 2 ǫ i − 1 dy 2 ǫ i , j + 1 1 1 1 + dy 2 ǫ i , j − 1 2 , k ( u i , j , k − u i , j − 1 , k ) − dz 2 ǫ i , j , k + 1 2 ( u i , j , k +1 − u i , j , k ) + dz 2 ǫ i , j , k − 1 2 ( u i , j , k − u i , j , k − 1 ) + ¯ k 2 i , j , k u i , j , k = Cq i , j , k . (3) (a) Discretization of continuous variables (b) Molecular surfaces and volumes Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 7/24

  8. Essentials of Reduced Basis Method (RBM) Introduction [ Benner et al ’2015, Eftang ’2011 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model Reduction: FOM to ROM Replace FOM Au N ( µ ) = f N ( µ ) , µ ∈ D , u N ( µ ) ≈ u N ( µ ) , N ≪ N . with ROM Au N ( µ ) = f N ( µ ) , RBM is a parametrized model order reduction (PMOR) technique, exploits an offline/online procedure, powerful tools - greedy algorithm and a posteriori error estimation, assumption - typically low dimensional solution manifold, M N = { u N ( µ ) : µ ∈ D } . (4) RB space V is built upon 4 - generated by greedy algorithm, range ( V ) = span { u N ( µ 1 ) , ..., u N ( µ N ) } , ∀ µ 1 , ..., µ N ∈ D . (5) Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 8/24

  9. Essentials of Reduced Basis Method (RBM) Greedy Algorithm [ Hesthaven et al 2014 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algorithm 1 Greedy algorithm Input: Training set Ξ ⊂ D including all of µ , i.e., Ξ := { µ 1 , . . . , µ l } . Output: RB basis represented by the projection matrix V . 1: Choose µ ∗ ∈ Ξ arbitrarily 2: Solve FOM for u N ( µ ∗ ) 3: S 1 = { µ ∗ } , V 1 = [ u N ( µ ∗ )], N = 1 4: while max µ ∈ Ξ ∆ N ( µ ) ≥ ǫ do µ ∗ = arg max µ ∈ Ξ ∆ N ( µ ) 5: Solve FOM for u N ( µ ∗ ) 6: S N +1 = S N ∪ µ ∗ , V N +1 = [ V N u N ( µ ∗ )] 7: Orthonormalize the columns of V N +1 8: N = N + 1 9: 10: end while Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 9/24

  10. Essentials of Reduced Basis Method (RBM) Computational complexity of the Reduced order Model (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nonaffine parameter dependence ( A 1 + µ A 2 ) u N ( µ ) = ρ + b ( µ ) , µ ∈ D . (6) Consider the reduced order model (ROM); ( ˆ ˆ ) u N ( µ ) + V T A 1 + µ A 2 = ρ ˆ b ( µ ) , (7) ���� ���� ���� ���� � �� � ���� N ×N N × N N × N N × 1 N × 1 N× 1 where ˆ A 1 = V T A 1 V , ˆ A 2 = V T A 2 V , ˆ ρ = V T ρ , and N ≪ N . matrix-vector products require 2 N N flops, full evaluation of b ( µ ). Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 10/24

  11. Essentials of Reduced Basis Method (RBM) Discrete Empirical Interpolation Method (DEIM) [ Chaturantabut 2010 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Compute snapshot matrix F = [ b ( µ 1 ) , . . . , b ( µ l )] ∈ R N× l , Singular values apply SVD to F : F = U F Σ W T , 10 − 5 U F ∈ R N× l , Σ ∈ R l × l , and W ∈ R l × l , Σ = diag ( σ 1 , . . . , σ l ) s.t, σ 1 > . . . > σ l ≥ 0, 10 − 15 0 5 10 15 20 l � σ i Number of singular values ǫ svd = 10 − 13 . i = r +1 < ǫ svd , l � σ i Figure: Decay of singular values 1=1 Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 11/24

  12. Essentials of Reduced Basis Method (RBM) Discrete Empirical Interpolation Method (DEIM) [ Volkwein 2010 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Select basis set { u F i } r i =1 of rank r from U F which solves, � l j =1 � x j − � r i =1 � x j , u F i � u F i � 2 s . t . � u i , u j � = δ ij , arg min 2 , { u F i } r i =1 DEIM determines U F c ( µ ) s.t, b ( µ ) ≈ U F c ( µ ) , c ( µ ) ∈ R r , determine c ( µ ) by selecting r rows from b ( µ ) = U F c ( µ ), suppose P T U is nonsingular, for P = [ e ℘ 1 , . . . , e ℘ r ] ∈ R N× r , then, P T b ( µ ) = P T U F c ( µ ) = ⇒ c ( µ ) = ( P T U F ) − 1 P T b ( µ ) , (8) ∴ b ( µ ) ≈ U F ( P T U F ) − 1 P T b ( µ ) . (9) ROM with DEIM approximation becomes, ( ˆ ˆ ) u N ( µ ) + V T U F ( P T U F ) − 1 P T b ( µ ) A 1 + µ A 2 = ρ ˆ . (10) ���� ���� ���� � �� � � �� � � �� � N × N N × N N × 1 N × 1 N × r r × 1 Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 12/24

  13. Essentials of Reduced Basis Method (RBM) Discrete Empirical Interpolation Method (DEIM) [ Chaturantabut 2010 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algorithm 2 DEIM algorithm Input: Basis { u F i } r i =1 for F . ℘ = [ ℘ 1 , . . . , ℘ r ] T ∈ R r . Output: DEIM basis U F and indices � 1: ℘ 1 = arg max {| u F 1 |} , 2: U F = [ u F 1 ], P = [ e ℘ 1 ] , � ℘ = [ ℘ 1 ]. 3: for i = 2 to r do Solve ( P T U F ) α = P T u F i for α , where α = ( α 1 , . . . , α i − 1 ) T , 4: r = u F i − U F α , 5: ℘ i = arg max {| r |} , 6: � � � ℘ U F ← [ U F u F i ], P ← [ P e ℘ i ], � ℘ ← . 7: ℘ i 8: end for Cleophas Kweyu, kweyu@mpi-magdeburg.mpg.de WIAM16, August 31- September 2, 2016 13/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend