issues in solving the boltzmann equation for aerospace
play

Issues in Solving the Boltzmann Equation for Aerospace Applications - PowerPoint PPT Presentation

Issues in Solving the Boltzmann Equation for Aerospace Applications ICERM, Providence, RI A high-order positivity preserving method for the Vlasov-Poisson system James A. Rossmanith 1 , David C. Seal 2 , Andrew J. Christlieb 2 1 Iowa State


  1. Issues in Solving the Boltzmann Equation for Aerospace Applications ICERM, Providence, RI A high-order positivity preserving method for the Vlasov-Poisson system James A. Rossmanith 1 , David C. Seal 2 , Andrew J. Christlieb 2 1 Iowa State University 2 Michigan State University June 7 th , 2013

  2. Outline Introduction Hybrid discontinous-Galerkin method Examples Other Extensions & Conclusions

  3. Outline Introduction Hybrid discontinous-Galerkin method Examples Other Extensions & Conclusions

  4. Vlasov-Poisson System: A Kinetic Plasma Model What is a plasma? ◮ ‘Fourth’ state of matter, and most abundant form of ordinary matter. Given enough energy, anything will turn into plasma. ◮ Can think of plasma as an ionized gas or liquid. Therefore model equations must respect E&M forces plus liquid/gas dynamics. Scientific and Engineering Applications of Plasma ◮ Astrophysics (stars, solar corona/wind) ◮ Nuclear experiments, tocamaks, stellerators ◮ Lightning/Polar Aurorae ◮ Flourescent lights, TVs, etc. Mathematical Models ◮ Fluid Models (e.g. continuum equations in gas dynamics) ◮ Kinetic Models - Computationally expensive.

  5. Vlasov-Poisson System: A Collisionless Plasma ◮ Probability distribution function (PDF): f ( t, x , v ) := probability of finding an electron at t & x , w/ vel. v ◮ Boltzmann equation (non-dimensional units): ∂f ∂t + v · ∇ x f + a · ∇ v f = C ( f ) Two species Vlasov-Poisson (Electrostics + C ( f ) ≡ 0 ) −∇ 2 φ = ρ ( t, x ) − ρ 0 . a = −∇ φ, ◮ Some numerical challenges 1. High dimensionality ( 3 + 3 + 1 ) - even worse for Boltzmann! 2. Conservation of mass & total energy, positivity 3. Complex geometries, boundary conditions. 4. Small time steps due to v ∈ R 3 or strong electric fields.

  6. Eulerian schemes Selecting a scheme for Vlasov-Poisson ◮ Popular “finite-X” methods: 1. Finite-Difference 2. Finite-Volume 3. Finite-Element 4. Discontinuous-Galerkin (high-order + unstructured grids) ◮ Main advantage: 1. Fast convergence 2. Provable accuracy, load balancing for parallel computing. ◮ Main disadvantage: 1. Curse of dimensionality 2. Courrant-Fredricks-Lewy (CFL) limits ◮ M th -order discontinuous-Galerkin: ν ≈ 1 / (2 M − 1) . 3. Diffusion (in velocity space) - bad! ◮ Some recent results for Vlasov-Poisson: [Banks & Hittinger, ’10] , [ Heath, Gamba, Morrison, Michler ’11 ], [ Cheng, Gamba, Morrison ’13 ], . . .

  7. Particle-in-cell and semi-Lagrangian methods Selecting a scheme for Vlasov-Poisson 1. Particle in Cell 2. semi-Lagrangian 1. ◮ Discretize f with “macro-particles.” √ ◮ Key difficulties: statistical noise ∼ O (1 / N ) . ◮ [Birdsall & Langdon, 1985] , [Hockney & Eastwood, 1989] 2. ◮ Main advantage: Remove CFL constraint, maintain mesh rep., . . . ◮ Main disadvantage: Boundary conditions and unstructured grids? Mesh distortions from Lagrangian evolution + interpolation error. ◮ [Parker & Hitchon, ’97] , [Sonnendrücker et al. ’99] , [Güçlü & Hitchon, ’12] , . . .

  8. Outline Introduction Hybrid discontinous-Galerkin method Examples Other Extensions & Conclusions

  9. Splitting Techniques for Vlasov-Poisson Semi-Lagrangian w/ Strang splitting for Vlasov: [Cheng & Knorr, 1976] , [Besse & Sonnendrücker, ’03] , [Qiu & Christlieb, ’09] , . . . Split f ,t + v · f , x + ∇ φ ( t, x ) · f , v = 0 into: ∆ t 1. 2 step on: f ,t + v · f , x = 0 - ∇ 2 φ = ρ n + 1 E n + 1 2 − ρ 0 2 = −∇ φ . 2. Solve and compute 3. ∆ t step on: f ,t + E n + 1 2 · f , v = 0 . ∆ t 4. 2 step on: f ,t + v · f , x = 0 High-order Runge-Kutta Nyström splitting for V-P is an option. [Rossmanith & S, ’10] , [Crouseilles et al, ’11] , [S, ’12] Multi-D extensions of SLDG? ◮ Natural extension = ⇒ Cartesian. ◮ Hybrid = Which method do we want to apply to sub-problems?

  10. Hybrid SLDG (HSLDG) for Vlasov-Poisson Proposed hybrid DG scheme 1. SLDG (Semi-Lagrangian DG) on velocity space: f ,t + E n + 1 2 · f , v = 0 . [ Rossmanith & S, ’10 ], [ Einkemmer & Ostermann, ’12 ], not [ Restelli et al, ’06 ], [ Qiu & Shu, ’11 ] (less efficient). ◮ Removes CFL condition. 2. RKDG (Runge-Kutta DG) on configuration space: f ,t + v · f , x = 0 . [ Reed & Hill, 1976 ], [ Cockburn & Shu, 90’s ] ◮ Unstructured grids and Boundary conditions. ◮ Sub-cycle independent problems. ◮ Disclosure: SLDG better for structured grids! Building blocks Need to define how sub-problems are tackled.

  11. Semi-Lagrangian DG (SLDG) Advection Equation: f ,t + a f ,v = 0 1. Reconstruct. The original projection: � 1 � F ( k ) ,n ϕ ( k ) F ( k ) ( t ) ϕ ( k ) ( v ) f ( t n , v ) dv ; := f ( t, v ) = ( v ) . i i i i ∆ v C i i,k 2. Evolve. The evolution step is simply the exact solution: f ( t, v ) = f 0 ( v − at ); f 0 ( v ) = f (0 , v ) . 3. Average. This step requires the solution from step 2. � 1 F ( k ) ,n +1 ϕ ( k ) ( v ) f ( t n +1 , v ) dv := i i ∆ v C i � 1 ϕ ( k ) ( v ) f ( t n , v − a ( t − t n ))) dv = i ∆ v C i

  12. 2D Semi-Lagrangian DG Constant coefficient advection: a.k.a. corner transport + high-order 1. Forward (cell discontinuities) 2. Backward (quadrature points) Advection equation: f ,t − E 1 f ,vx − E 2 f ,vy = 0 � 1 i,j ( x, y ) f h � � F ( k ) ,n +1 ϕ ( k ) t n +1 , x, v := dx dv � � i,j � T i,j � T i,j 4 � 1 � i,j ( x, y ) f h � t n , x + ∆ tE 1 , v + ∆ tE 2 � ϕ ( k ) = dx dv � � � T i,j � T m m =1 i,j ◮ Mass conservation (and stability!) come from exact integration

  13. Hybrid DG: Reduction to sub-problems Not trivial because basis functions depend on transverse variable 1. Reconstruct: Start with a full 2 N -dimensional solution: � � f h ( t n , x , v ) F ( k 2 ) ( t n ) ϕ ( k 2 ) � = 2 N ( x , v ) � i T 2 N i k 2 2. Project full solution onto to sub-problems ( N -dimensional) by taking slices at quadrature points { v 1 , v 2 , . . . v M N } : � � f h ( t n , x , v m ) F ( k ) N,i ( t n ) ϕ ( k ) � = N ( x ) � T N i k 3. Evolve (RKDG or SLDG) sub-problems: �� � f h � t n +1 , x , v m F ( k ) N,i ( t n +1 ) ϕ ( k ) � = N ( x ) � T N i k 4. Integrate: Sub-problems integrated up to 2 N -dimensional problem: �� � f h � F ( k 2 ) ( t n +1 ) ϕ ( k 2 ) t n +1 , x , v � = 2 N ( x , v ) � i T 2 N i k 2

  14. 1D-1V Example: f ,t + v f ,x = 0 1. Full 2D-solution. 2. 1D-Problems (at quadrature points). 3. Evolve lower-D problems (SLDC/RKDG) 4. Integrate up to full soln.

  15. HSLDG for Vlasov-Poisson: Sub-Cycling Basic Idea: March sub-problems at their own pace ◮ Many independent sub-Problems: f ,t + v m f ,x = 0 . Global restriction: ∆ t ≤ CFL ∆ x | v max | ≪ CFL ∆ x | v m | ∼ ∆ t local � � �� | v m | ∆ t ◮ For each equation, define: ∆ t local := ∆ t/ max 1 , . ν ∆ x

  16. Outline Introduction Hybrid discontinous-Galerkin method Examples Other Extensions & Conclusions

  17. Example: Forced Vlasov-Poisson Test Problem ◮ Method of Manufactured Solutions produces a source term: � ∞ f ( t, x, v ) dv − √ π. f ,t + vf ,x + E ( t, x ) f ,v = ψ ( t, x, v ) , E ,x = −∞ ◮ Choose the exact solution: f ( t, x, v ) = { 2 − cos (2 x − 2 πt ) } e − 1 4 (4 v − 1) 2 . ◮ New Hybrid Operators: Sub-cycled RKDG on Problem A : f ,t + v f ,x = ψ ( t, x, v ) , SLDG on Problem B : f ,t + E ( t, x ) f ,v = 0 , Mesh HSL2 Error log 2 (Ratio) HSL4 Error log 2 (Ratio) 10 2 5 . 193 × 10 − 1 1 . 085 × 10 0 – – 20 2 1 . 432 × 10 − 1 2 . 725 × 10 − 1 1 . 858 1 . 993 40 2 1 . 640 × 10 − 2 1 . 652 × 10 − 2 3 . 126 4 . 044 80 2 3 . 438 × 10 − 3 7 . 058 × 10 − 4 2 . 255 4 . 548 160 2 8 . 333 × 10 − 4 3 . 421 × 10 − 5 2 . 045 4 . 367 320 2 2 . 068 × 10 − 4 1 . 953 × 10 − 6 2 . 011 4 . 131 640 2 5 . 161 × 10 − 5 1 . 197 × 10 − 7 2 . 003 4 . 028

  18. Example: Landau Damping with HSLDG Initial Conditions: � � 1 e − v 2 f ( t = 0 , x, v ) = 1 + α cos( kx ) √ 2 2 π Weak Landau Strong Landau −1 1 10 10 −2 10 0 10 −3 10 −1 10 −4 10 −5 10 −2 10 −6 10 −3 10 −7 10 −8 −4 10 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 α = 0 . 01 α = 0 . 5

  19. Plasma Sheath Simulation (1D-1V) with HSLDG Initial conditions (in dimensional quantitites): � � v 2 ρ 0 ˜ − m ˜ ˜ v ) = ˜ f (0 , ˜ x, ˜ f 0 (˜ v ) = exp , ˜ x ∈ [0 , L ] . � 2 k ˜ 2 πmk ˜ θ 0 θ 0 Boundary conditions: ˜ ˜ v ) = ˜ f ( t, ˜ x = 0 , ˜ v ) = 0 , f ( t, ˜ x = L, ˜ f 0 (˜ v ) , ˜ ˜ φ ( t, ˜ x = 0) = 0 , φ ˜ x ( t, ˜ x = L ) = 0 . ρ 0 = 9 . 10938188 × 10 − 18 kg 1 eV electrons, 0.1m domain, density ˜ m .

  20. Plasma Sheath Simulation (1D-1V) with HSLDG (sheath-movie.mp4)

  21. Plasma Sheath Simulation (1D-1V) with HSLDG

  22. Plasma Sheath Simulation (1D-1V) with HSLDG E(t,x) at t = 3.0269e−06 n e (t,x) at t = 3.0269e−06 12 12.5 x 10 800 600 10 400 200 7.5 0 5 −200 −400 2.5 −600 −800 0 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 Number density Electric field

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend