computing an lll reduced basis of the orthogonal lattice
play

Computing an LLL-reduced Basis of the Orthogonal Lattice Jingwei - PowerPoint PPT Presentation

Computing an LLL-reduced Basis of the Orthogonal Lattice Jingwei Chen Damien Stehl e Gilles Villard Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Laboratoire LIP (UMR CNRS - ENS Lyon - UCB Lyon 1 -


  1. Computing an LLL-reduced Basis of the Orthogonal Lattice Jingwei Chen Damien Stehl´ e Gilles Villard Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Laboratoire LIP (UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668) The 43rd ISSAC @ CUNY Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 1 / 14

  2. Motivation The problem: Given A ∈ Z n × k , consider using LLL to reduce   K · a 1,1 K · a 1,2 · · · K · a 1,n . . . ...   . . .  . . .      K · a k,1 K · a k,2 · · · K · a k,n   � � rank( A )= k , LLL ∗ 0     . · · · 1 0 0 → − − − − − − − − − − − −   ∗ C n × ( n − k ) K large enough   · · ·  0 1 0     . . ...  . .   . . 0     0 0 · · · 1 Then C gives short vectors of � � m ∈ Z n : A T m = 0 L ⊥ ( A ) = = ker ( A T ) ∩ Z n , which we call the orthogonal lattice of A (kernel lattice of A T ). Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 2 / 14

  3. Motivation The problem: Given A ∈ Z n × k , consider using LLL to reduce   K · a 1,1 K · a 1,2 · · · K · a 1,n . . . ...   . . .  . . .      K · a k,1 K · a k,2 · · · K · a k,n   � � rank( A )= k , LLL ∗ 0     . · · · 1 0 0 → − − − − − − − − − − − −   ∗ C n × ( n − k ) K large enough   · · ·  0 1 0     . . ...  . .   . . 0     0 0 · · · 1 Then C gives short vectors of � � m ∈ Z n : A T m = 0 L ⊥ ( A ) = = ker ( A T ) ∩ Z n , which we call the orthogonal lattice of A (kernel lattice of A T ). Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 2 / 14

  4. Motivation The problem: Given A ∈ Z n × k , consider using LLL to reduce   K · a 1,1 K · a 1,2 · · · K · a 1,n . . . ...   . . .  . . .      K · a k,1 K · a k,2 · · · K · a k,n   � � rank( A )= k , LLL ∗ 0     . · · · 1 0 0 → − − − − − − − − − − − −   ∗ C n × ( n − k ) K large enough   · · ·  0 1 0     . . ...  . .   . . 0     0 0 · · · 1 Then C gives short vectors of � � m ∈ Z n : A T m = 0 L ⊥ ( A ) = = ker ( A T ) ∩ Z n , which we call the orthogonal lattice of A (kernel lattice of A T ). Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 2 / 14

  5. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  6. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  7. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  8. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  9. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  10. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  11. Motivation The problem: LLL reducing ( K · A , I n ) T . • How large should the scaling parameter K be? n − 1 n − k 2 ·� A � k , where � A � = max � a i � . 2 · ( n − k ) • Sufficient: K > 2 • Heuristic: K > 2 Ω ( n ) · � A � k n − k . • How does K impact the complexity bound of LLL? asz ’82] : #iterations = O ( n 2 log ( K � A T � )) . [Lenstra, Lenstra, Lov´ • Example: n = 4 , k = 2 . T    8 69 99 29 A =  − 31 44 92 67 • sufficient K > 253 600 ; heuristic K > 2 015 ; best K = 233 . • When K > 458 , the number of LLL iterations remains. Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 3 / 14

  12. Contribution captures the behavior of LLL more accurately A new potential function for the LLL algorithm. • a variant of the classic one A better bound on #iterations of LLL for computing a reduced • basis of the orthogonal lattice L ⊥ ( A ) . • We prove that #iterations is independent of K for large K . • [Pohst ’87], [Havas, Majewski & Matthews ’98] Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 4 / 14

  13. Contribution captures the behavior of LLL more accurately A new potential function for the LLL algorithm. • a variant of the classic one A better bound on #iterations of LLL for computing a reduced • basis of the orthogonal lattice L ⊥ ( A ) . • We prove that #iterations is independent of K for large K . • [Pohst ’87], [Havas, Majewski & Matthews ’98] Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 4 / 14

  14. Contribution captures the behavior of LLL more accurately A new potential function for the LLL algorithm. • a variant of the classic one A better bound on #iterations of LLL for computing a reduced • basis of the orthogonal lattice L ⊥ ( A ) . • We prove that #iterations is independent of K for large K . • [Pohst ’87], [Havas, Majewski & Matthews ’98] Jingwei Chen (CAS) Computing an LLL-reduced Basis of the Orthogonal Lattice 2018/07/18 4 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend