quantum capacitance quantum capacitance in scaled down
play

Quantum Capacitance Quantum Capacitance in Scaled-Down III-V FETs - PowerPoint PPT Presentation

Quantum Capacitance Quantum Capacitance in Scaled-Down III-V FETs Donghyun Jin, Daehyun Kim * , Taewoo Kim and g y , y , Jess A. del Alamo Microsystems Technology Laboratories y gy Massachusetts Institute of Technology * Presently with


  1. Quantum Capacitance Quantum Capacitance in Scaled-Down III-V FETs Donghyun Jin, Daehyun Kim * , Taewoo Kim and g y , y , Jesús A. del Alamo Microsystems Technology Laboratories y gy Massachusetts Institute of Technology * Presently with Teledyne Scientific Acknowledgement: FCRP-MSD Center, Intel 1

  2. Overview Overview 1 Motivation 1. Motivation 2. Gate Capacitance Model for III-V FETs 3 M 3. Measurements of C G on InGaAs HEMTs t f C I G A HEMT 4. Comparison of Model and Experiments 5. Projection for 10 nm III-V MOSFETs 6 Conclusions 6. Conclusions 2

  3. 1 Motivation : III-V CMOS 1. Motivation : III V CMOS III-V MOSFET Gate III ‐ V Channel Source Drain • III-V CMOS: III-V semiconductor in channel - High electron velocity � Low effective mass (m * ) 3

  4. 1 Motivation : III-V CMOS 1. Motivation : III V CMOS III-V MOSFET Gate III ‐ V Channel Source Drain • III-V CMOS: III-V semiconductor in channel - High electron velocity � Low effective mass (m * ) • Low m * � small Density of States (DOS) Low m � small Density of States (DOS) � low sheet carrier concentration (N S ) in channel • Will III-V CMOS attain required N S Will III V CMOS attain required N at the 10 nm node? 4

  5. Gate Capacitance Gate Capacitance in III-V MOSFET C cent III-V MOS III V MOS V V G V G C Gate E C C ins ψ ψ ins ψ S S Insulator E F S C C Q C Q III ‐ V Channel inv C Metal III-V Channel cent Insulator • Inversion-layer capacitance (C inv ) is series of - Quantum capacitance (C Q ): Quantum capacitance (C ): � E F penetration in CB, proportional to DOS - Centroid capacitance (C cent ): � Finite distance of electrons away from interface � Finite distance of electrons away from interface 5

  6. Gate Capacitance Gate Capacitance in III-V MOSFET C cent III-V MOS III V MOS V V G V G C Gate E C C ins ψ ψ ins ψ S S Insulator E F S C C Q C Q III ‐ V Channel inv C Metal III-V Channel cent Insulator • Inversion-layer capacitance (C inv ) is series of - Quantum capacitance (C Q ): Quantum capacitance (C ): � E F penetration in CB, proportional to DOS - Centroid capacitance (C cent ): � Finite distance of electrons away from interface � Finite distance of electrons away from interface m* ↓ � DOS ↓ � C Q ↓ � Problem in III-V MOSFET? 6

  7. Gate Capacitance in III-V HEMTs Gate Capacitance in III V HEMTs Goal: Experimental and theoretical study of C G in III-V HEMTs III-V High Electron Mobility Transistor L L G Source Drain Barrier Si δ doping t ins Channel t ch t ins = Barrier thickness t ch = Channel thickness Buffer • Experimentally extract C G for HEMTs with different t ins and t ch • Build C G model including DOS effect • Project C G and N S of scaled down III-V FETs 7

  8. Experimental HEMT Cross Section Experimental HEMT Cross Section Metal PR PR Gate Gate Barrier = In 0.52 Al 0.48 As (4 or 10 nm) S D Oxide Channel = In 0.53 Ga 0.47 As (2 nm) Cap Channel = In 0.7 Ga 0.3 As (8 nm) Channel= In Ga As (8 nm) Etch stopper Etch stopper Core or InAs (5 nm) Barrier t ins t ch Channel Channel = In 0.53 Ga 0.47 As (3 nm) t ch = 10 nm Buffer Buffer = In 0.52 Al 0.48 As (~400 nm) L L G = 30 nm 30 Substrate = InP (~300 nm) Type B HEMT • Three different heterostructures explored : t ins (nm) t ch (nm) Channel Core Reference L G range (nm) Type A 10 10 InAs (5 nm) Kim, unpublished 40 ~ 100 Type B 4 10 0 InAs (5 nm) ( ) Kim, IEDM 2008 i 2008 30 30 ~ 200 200 Type C 4 13 In 0.7 Ga 0.3 As (8 nm) Kim, IEDM 2006 40 ~ 100 8

  9. 2. Gate Capacitance Model p C C ins ψ ins ψ S S C C ins ψ C C S … … 1 Q 2 Q C C C inv 1 2 inv inv C C 2 cent cent cent 1 1 1 st Subband 2 nd Subband 1 st Subband 2 nd Subband ∂ − ( ( ) ) 1 Q Q ∑ ∑ = = S S C C ∂ ψ inv 1 1 + i S C C _ _ Q i cent i 9

  10. 2. Gate Capacitance Model p C C ins ψ ins ψ S S C C ins ψ C C S … … 1 Q 2 Q C C C inv 1 2 inv inv C C 2 cent cent cent 1 1 1 st Subband 2 nd Subband 1 st Subband 2 nd Subband ∂ − ( ( ) ) 1 Q Q ∑ ∑ = = S S C C ∂ ψ inv 1 1 + i S C C _ _ Q i cent i Quantum capacitance 2D DOS Centroid capacitance * 2 m q of subband i of subband i || ∂ − π π � ( ) E E 2 = = = ⋅ ∂ F i C C C C C C − − _ _ _ cent i Q i Q i E E ( ) E E + 1 exp( i F ) i C kT 10

  11. Verification of Physical Model Verification of Physical Model Type A • Solid line : 12 I G A InGaAs (t ch = 13 nm, t ins = 4nm) (t 13 t 4 ) Numerical simulation results 10 Type B from 1D Poisson-Schrodinger InAs (t ch = 10 nm, t ins = 4 nm) solver (Nextnano) 8 m 2 ] C G [fF/ μ m Type C (- ) d Q 6 = InAs S C (t ch = 10 nm, t ins = 10 nm) G dV 4 G • Symbols : 2 Physical model results 0 (using Nextnano to extract E i ) (using Nextnano to extract E i ) -0.4 0 4 -0.2 0 2 0 0 0.2 0 2 0 4 0.4 V G [V] Good agreement g between model and numerical simulations 11

  12. 3. Experimental C G in a HEMT obtained from S – parameter measurements f S Type B Gate Small V DS 3000 V GS = 0.4 V V DS = 10 mV ½ C gext [fF/mm] ½ C gext 0.35 2500 L G 0 3 0.3 G (V GS = -0.3 V) 2000 C gi Barrier 1500 0.25 Channel 1000 C G - C G 0.2 Parasitic Gate Capacitance Intrinsic Gate Capacitance 500 Slope = C gi 0 C G (in fF/ μ m) = C gi (in fF/ μ m 2 ) x L G + C gext 0 50 100 150 200 250 L G [nm] L [nm] C gi = Slope of C G - C G (V G = -0.3V) with L G G ( ) gi G G G 12

  13. Experimental Intrinsic Gate Capacitance Experimental Intrinsic Gate Capacitance 15 Type B Type B 10 μ m 2 ] Type C C gi [fF/ μ 5 Type A 0 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 V V G [V] [V] Comparison with physical model: y C ins , C Q , C cent contribution to C gi 13

  14. 4. Comparison of measurements and model : T Type A (InAs channel, t ch = 10 nm, t ins = 10 nm) A (I A h l t 10 t 10 ) 50 0 8 0.8 Experiment (C G ) 40 0.6 F/ μ m 2 ] E 2 C cent1 V] E i - E F [eV 30 30 0 4 0.4 apacitance [fF C Q1 E 1 0.2 20 C inv1 C ins (t ins = 10 nm) E F E F Ca 0 10 C G C inv2 -0.2 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 V V G [V] [V] V G [V] • Good agreement between measurements and model • C ins comparable to C inv � C G ~ 62% of C ins C bl t C � C 62% f C • Only 1 st subband populated 14

  15. Comparison of measurements and model : Type B (InAs channel, t ch = 10 nm, t ins = 4 nm) T B (I A h l t 10 t 4 ) 50 0.8 Experiment (C ) Experiment (C G ) 40 0.6 [fF/ μ m 2 ] E 2 C ins (t ins = 4 nm) [eV] 30 0.4 Capacitance E i - E F [ E 1 20 0.2 C Q1 C inv1 C cent1 E F 0 0 10 10 C G C inv2 -0.2 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 V G [V] V G [V] G • Moderate agreement • C Q1 < C ins � C G limited by C Q1 : C G ~ 47% of C ins y Q1 ins G Q1 G ins • Only 1 st subband populated 15

  16. Comparison of measurements and model : Type C (In 0.7 Ga 0.3 As channel, t ch = 13 nm, t ins = 4 nm) T C (I G A h l t 13 t 4 ) 50 0.8 Experiment (C ) Experiment (C G ) 40 0.6 [fF/ μ m 2 ] E 2 C ins (t ins = 4 nm) [eV] 30 0.4 E i - E F [ Capacitance C Q1 E 1 20 0.2 C inv1 C cent1 E F C G 10 0 0 C inv2 0 -0.2 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 V G [V] V G [V] G • Good agreement • Thicker channel: C cent1 comparable to C ins � C G ~ 35% of C ins • 1 st subband dominant, 2 nd subband minor 16

  17. Summary of Key Findings Type A Type B Type C (InAs , t ch = 10 nm, t ins = 10 nm) (InAs , t ch = 10 nm, t ins = 4 nm) (In 0.7 Ga 0.3 As, t ch = 13 nm, t ins = 4 nm) 50 50 50 Experiment (C G ) Experiment (C G ) Experiment (C G ) 40 40 40 itance [fF/ μ m 2 ] itance [fF/ μ m 2 ] tance [fF/ μ m 2 ] C cent1 C ins ( t ins = 4 nm) C ins ( t ins = 4 nm) 30 30 30 C Q1 C Q1 20 20 20 20 20 20 C C Q1 Capaci Capaci Capac C inv1 C inv1 C inv1 C cent1 C ins ( t ins = 10 nm) C cent1 C G 10 10 10 C G C G C inv2 C inv2 C inv2 0 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 V V G [V] [V] V G [V] V G [V] • Finite C inv severely reduces C G below C ins • C Q1 smallest in lower m* channel Q1 • 1 st subband dominates • C cent1 relevant: t ch ↓ � C cent1 ↑ 17

  18. Summary of Key Findings Type A Type B Type C (InAs , t ch = 10 nm, t ins = 10 nm) (InAs , t ch = 10 nm, t ins = 4 nm) (In 0.7 Ga 0.3 As, t ch = 13 nm, t ins = 4 nm) 50 50 50 Experiment (C G ) Experiment (C G ) Experiment (C G ) 40 40 40 itance [fF/ μ m 2 ] itance [fF/ μ m 2 ] tance [fF/ μ m 2 ] C cent1 C ins ( t ins = 4 nm) C ins ( t ins = 4 nm) 30 30 30 C Q1 C Q1 20 20 20 20 20 20 C Q1 C Capaci Capaci Capac C inv1 C inv1 C inv1 C cent1 C ins ( t ins = 10 nm) C cent1 C G 10 10 10 C G C G C inv2 C inv2 C inv2 0 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 V V G [V] [V] V G [V] V G [V] • Finite C inv severely reduces C G below C ins • C Q1 smallest in lower m* channel Q1 • 1 st subband dominates • C cent1 relevant: t ch ↓ � C cent1 ↑ C ( C G (exp) > C G (model) in Type B, Why? ) C ( d l) i T B Wh ? � C Q1 most relevant in Type B 18

  19. Source of Discrepancy for C G in Type B p y yp G 1.Uncertainty in t ins - ±0.5 nm error margin from TEM g 2. Increase of in-plane effective mass (m || * ) - Biaxial channel strain + Non-parabolicity + Quantization [Theory : Nag APL 1993; Experiment : Wiesner APL 1994] [Theory : Nag APL 1993; Experiment : Wiesner APL 1994] 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend