quantitative texture analysis of shells palm canyon
play

Quantitative Texture Analysis of shells, Palm Canyon mylonites, - PowerPoint PPT Presentation

Quantitative Texture Analysis of shells, Palm Canyon mylonites, natural ice, metamorphic amphibolites and SCT-microquartz D. Chateigner - Laboratoire de Cristallographie et Sciences des Matriaux (CRISMAT) - Ecole Nationale Suprieure


  1. Quantitative Texture Analysis of shells, Palm Canyon mylonites, natural ice, metamorphic amphibolites and SCT-microquartz D. Chateigner - Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT) - Ecole Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)

  2. Outline • Textures of mollusc shells – Generalities – a - and c -axes patterns of aragonitic layers, twinning – Complex growth of layers: microstructure versus texture – global versus local probes – QTA and Mollusc's Phylogeny – QTA and calcitic fossils – QTA and Mollusc's prothaetics • Polyphased Mylonite (Palm Canyon, California) • Natural ice from the Greenland GRIP core • Metamorphic Amphibolites from Alps • Siliceous Crust-Type microquartz

  3. Textures of Mollusc Shells In collaboration with C. Hedegaard ( DGB Aarhus, Denmark ) H.-R. Wenk (DEPS Berkeley, USA ) L. Harper (DES Cambridge, UK) M. Morales (SIFCOM Caen, France)

  4. Generalities Reference frame in mollusc shells • Crystal: CaCO 3 , aragonite (Pmcn) or calcite (R c), for 3 M thousands of crystallites: . G . G N M N Euglandina sp.

  5. Typical x-ray diffraction pattern Mytilus edulis (common mussel) 600000 inner sheet nacre 121/012 500000 400000 112/022/031 113/141 Intensity 300000 231/023 002 200 130 200000 041/202 132 100000 0 25 30 35 40 45 50 55 60 2 θ °

  6. Crassostrea gigas (common oyster) outer foliated calcite 400000 202 300000 Intensity 122/10 10 124/208/119 113 200000 104 110 018/024 300 116 121 100000 215 0 25 30 35 40 45 50 55 60 65 70 2 θ ° Measured for around 1000 sample orientations, using x-rays, neutrons With electrons, around 3000 crystallites probed, provided flat surface

  7. Typical neutron diffraction pattern Belemnite rostrum 104 113 012 006 024/108 211/122 116 1010 110 202

  8. ODF-reliability (x-rays: point detector): Helix pomatia (Burgundy land snail: Outer com. crossed lamellar)

  9. OD-reliability (x-rays: PSD): Bathymodiolus thermophilus (deep ocean mussel: Outer Prismatic layer) 6.3 RP 0.05 = 25% RP 1 = 17% 1 m.r.d. S = - 1.9 Lin. scale F 2 = 13 m.r.d. 2 Eq. area proj. OD max = 63 m.r.d.

  10. a - and c -axes patterns of aragonitic layers, twinning c -axes texture patterns Nerita Fragum Cypraea Pinctada polita fragum testudinaria maxima ICCL ICCL ICCL ISN “polished “cockle” “turtle “gold pearl nerite” cowry” oyster” ⊥ ∠ ∀ ∨

  11. a -axes texture patterns Tectus Conus Nautilus Helix niloticus leopardus pompilius pomatia ICN ICCL ICN OCCL “commercial “leopard “new caledonia “burgundy top shell” cone” nautilus” land snail” ∗ | £ r Chateigner, Hedegaard, Wenk, J. Struct. Geol. 22 (2000) 1723-1735

  12. Proposal for a nomenclature for texture and microstructure types a, - 45 ISN ∗ ⊥ direction // ( G,M ) 25 angle from G a-axes distribution twin % Layer microstructure type c-axes distribution ISN: Inner Sheet Nacre ICCL: Inner Comarginal Crossed Lamellar ORCL: Outer Radial Crossed Lamellar ICN: Inner Columnar Nacre IPC: Inner Prismatic Calcite …

  13. Microstructure versus Texture Inner sheet nacre of Anodonta cygnea (river mussel): no intra-mineral epitaxy 100 010 001 20 µ m N a, - 45 ISN ∗ ⊥ 25 G

  14. Bathymodiolus thermophilus (-2400m deep mussel): no inter-mineral epitaxy 100 001 c, 0 , 90 OFC ∠ Ι 10 µ m N 001 100 a, 90 ISN ∗ G ⊥ 38

  15. Euglandina sp.: different crystallite shapes, close orientations ! 001 100 a, 75 ORCL I ⊥ 100 µ m 001 100 N a, 80 ICCL I ⊥ G

  16. From ISN to OCCL layers of Cypraea testudinaria (cowry): no inter-layer epitaxy Organically driven growth

  17. Cyclophorus woodianus : different SEM grain orientations look like single crystal from diffraction ! 20 µ m 100 001 100 µ m N a, 20 IRCL I ⊥ G Texture parameters may deserve phylogenic analysis

  18. Twinning in aragonite ... α (110) Domain II Domain I a b α = 2 arctan(a/b) = 63.8°

  19. … forms nacre platelets ... ( 10) 1 (110) ( 10) 1 (110) ? ? Bragg, 1937 Mutvei, 1980

  20. … that rearrange ... >100 16 1 1 Pinctada margaritifera Haliotis cracherodi (black pearl oyster: ISN) (black abalone: ISN)

  21. Global versus Local probes Crassostrea gigas (common oyster: Inner foliated calcite) Electrons 2604 measured 700 only non-rejected RP 0.05 = 45% x-rays: MAD criterion: 0.3% RP 1 = 31% max = 85 m.r.d. max = 100 m.r.d. Kikuchi diagrams x-rays

  22. QTA and Mollusc's Phylogeny From 70 mollusc species (gastropods, bivalves and cephalopods), around 150 layers studied

  23. Closely related species, close textural characters, but significant variations: textural parameters can serve character analysis a, 20 ISN ∗ ⊥ Atrina maurea 44 a, 95 ISN ∗ Pinna nobilis ⊥ 25 a, 90 ISN ∗ ⊥ Lampsilis alatus 25 110 , 15 ICCL < > ∀ × Fragum fragum 50 110 , 15 ICCL < > ∀ × Glycymeris gigantea 50 110 , - 15 , 10 ICCL < > ∨ × Spondylus princeps 50 ICCL O , 20 OSiP O ⊥ ∠ Bivalvia Paphia solanderi a, 90 ISN ∗ ⊥ Neotrigonia sp. 12 a, 90 ISN ∗ ⊥ Pinctada margaritifera 8 a, 90 ISN ∗ ⊥ Pinctada maxima 14 a, - 30 ISN ∗ ⊥ Pteria penguin 15

  24. IN O Monoplacophora Neopilina galatheae ⊥ IN O ⊥ Rokopella zografi a, 75 ICN ∗ ⊥ Nautilus pompilius 61 a, 80 ICN ∗ ⊥ Cephalopoda Nautilus macromphalus 110 , - 10 , 25 IRCL < > ∨ × Scutellaster tabularis 50 ICCL × a, 60 ORCL O ⊥ ⊥ Conus leopardus 47 a, - 50 ICCL × ⊥ Muricanthus nigritus 47 a, 20 IRCL I ⊥ Cyclophorus woodianus a, 45 IP ∗ ⊥ Cypraea mus a, 10 , 15 ICCL I ∨ Cypraea testudinaria a, 30 OCCL × ⊥ Oliva miniacea 50 a, - 80 ICCL I ⊥ - Euglandina sp. a, 90 OCCL I ⊥ Helix aspera a, 90 OCCL I ⊥ Helix pomatia Gastropoda

  25. Gastropoda ICN O Entemnotrochus adansonianus ⊥ ICN O ⊥ Perotrochus quoyanus , 15 ICN O ∠ Haliotis cracherodi ICN O ⊥ Haliotis rufescens ICN O ⊥ Tectus niloticus , 15 OSP O ∠ Tectus pyramis OSP O ⊥ Turbo petholatus OICP O ⊥ Phasianella australis | | 110 , 20 ICoCL * < > ∨ \ \\ Fissurella oriens 55 a, 90 ICCL ∗ ⊥ Scutus antipodes 17 \ \\ a , 25 ICCL ∠ × Nerita polita 58 ICoCL O ⊥ Nerita scabricota ICCL O OCCL O , 15 OHC O ⊥ ⊥ ∠ Viana regina

  26. Phylogenic interest: nacre = ancestral (Carter & Clarck, 1985) 19 evolutionary events, from cladistics charactere analysis

  27. nacre not ancestral 9 events

  28. Calcitic fossils: trichites - Fragments of the large bivalve Trichites relatively abundant in shallow marine sediments from the Middle to Upper Jurassic of Europe, Asia and Africa - Entire individuals are rare and the palaeobiology of the genus is poorly understood because of this - Studied specimens are thick, some fragments up to 3 cm in thickness, composed of a coarse simple prismatic calcite - Taxonomic position of Trichites remains problematic: pinnoids ?

  29. Pinnoid and Pterioid prismatic layers Pinna nobilis c-axes // N a-axes at random Pteria penguin

  30. Mussels prismatic layers Mytilus edulis c-axes ∠ N a-axes single-crystal like c-axes ⊥ N, // G Bathymodiolus thermophilus

  31. Scallop and trichite prismatic layers Amussium parpiraceum (scallop) c-axes ⊥ N, // G a-axes single-crystal like Trichites (fossil) c-axes ∠ N a-axes random

  32. Texture Analysis results F 2 Layer ODF ODF min RP0 RP1 c-axis a-axis {001} Max - S (mrd 2 ) type Max (mrd) (%) (%) (mrd) (mrd) Pinna nobilis OP 303 0 50 29 // N random 68 29 2.3 Pteria penguin OP 84 0 29 15 // N random 31 13 1.9 Amussium OP 330 0 53 33 // G <110> // 20 31 2.6 parpiraceum M Bathymodiolus OP 63 0 25 18 // G // M 27 13 1.9 thermophilus Mytilus edulis OP 207 0 41 25 75° <110> // 23 21 2.2 from N M Trichites P 390 0 52 28 15° random 56 41 2.2 from N Crassostrea gigas IF 908 0 45 31 35° // M >100 329 5.1 from N No DNA is available on fossils like Trichites, but Trichite's textural parameters are close to the ones of pinnoids or pterioids : interesting for the classification of extinct species Materials Science Forum, 408-412 , 2002, 1687-1692

  33. Calcitic fossils: Belemnites c c Belemnita mucronatus c- axes perp. to the shell: as in other cephalopods

  34. Aragonite fossils: Baculities sp. Baculities c- axes perp. to the shell: as in other cephalopods, strong c -calcite to c -aragonite fossils interaction

  35. QTA and Mollusc's prothaetics Pinctada margaritifera, P. maxima and P. Nobilis nacres: Bio-compatible and bio-inductive layers for rabbit bones (E. Lopez (MNHN, Paris)

  36. a, 20 ISN ∗ ⊥ Atrina maurea 44 a, 95 ISN ∗ Pinna nobilis ⊥ 25 a, 90 ISN ∗ ⊥ Lampsilis alatus 25 110 , 15 ICCL < > ∀ × Fragum fragum 50 110 , 15 ICCL < > ∀ × Glycymeris gigantea 50 110 , - 15 , 10 ICCL < > ∨ × Spondylus princeps 50 ICCL O , 20 OSiP O ⊥ ∠ Bivalvia Paphia solanderi a, 90 ISN ∗ ⊥ Neotrigonia sp. 12 a, 90 ISN ∗ ⊥ Pinctada margaritifera 8 a, 90 ISN ∗ ⊥ Pinctada maxima 14 P. Margaritifera a, - 30 ISN ∗ ⊥ Pteria penguin 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend