proto neutron star winds with magnetic fields rotation
play

Proto-Neutron Star Winds with Magnetic Fields & Rotation (and - PowerPoint PPT Presentation

Proto-Neutron Star Winds with Magnetic Fields & Rotation (and other non-traditional r-process sites) Brian Metzger NASA Einstein Fellow, Princeton University with Todd Thompson (OSU), Eliot Quataert (UC Berkeley), Tony Piro (UC Berkeley)


  1. Proto-Neutron Star Winds with Magnetic Fields & Rotation (and other non-traditional r-process sites) Brian Metzger NASA Einstein Fellow, Princeton University with Todd Thompson (OSU), Eliot Quataert (UC Berkeley), Tony Piro (UC Berkeley) Metzger, Thompson & Quataert 2007, 2008 Metzger, Piro & Quataert 2008, 2009 EMMI r-Process Workshop - July 16, 2010

  2. Astrophysical R-Process Sites τ n << τ β ⇒ NS or BH accretion disk 1) Low Entropy < 1 k b nuc -1 , Y e ~ 0.1 ⇒ Neutron Star Mergers (Dynamical Ejecta) (Lattimer & Schramm 1974, 76; Eichler et al.1989; Freiburghaus et al. 1999; see talk by Goriely) 2) High Entropy > 10 2 k b nuc -1 , 0.4 < Y e < 0.5 ⇒ Neutrino-Driven Wind - Proto-Neutron Stars in Core Collapse Supernovae - Hyper-Accreting Disks (Collapsars & NS Mergers) 3) “Intermediate” Entropy ~ 10 k b nuc -1 , Y e ~ 0.2-0.4 ⇒ Thermonuclear-Driven Winds - Hyper-Accreting Disks (Late Times)

  3. Astrophysical R-Process Sites τ n << τ β ⇒ NS or BH accretion disk 1) Low Entropy < 1 k b nuc -1 , Y e ~ 0.1 ⇒ Neutron Star Mergers (Dynamical Ejecta) (Lattimer & Schramm 1974, 76; Eichler et al.1989; Freiburghaus et al. 1999; see talk by Goriely) 2) High Entropy > 10 2 k b nuc -1 , 0.4 < Y e < 0.5 ⇒ Neutrino-Driven Wind - Proto-Neutron Stars in Core Collapse Supernovae - Hyper-Accreting Disks (Collapsars & NS Mergers) 3) “Intermediate” Entropy ~ 10 k b nuc -1 , Y e ~ 0.2-0.4 ⇒ Thermonuclear-Driven Winds - Hyper-Accreting Disks (Late Times)

  4. Proto-Neutron Star Winds (Duncan et al. 1986; Takahashi et al. 1994; Burrows et al. 1995; Qian & Woosley 1996) Neutrinos Heat Proto-NS Atmosphere (e.g. ν e + n ⇒ p + e - ) ⇒ Drives Thermal Wind Behind Outgoing Supernova Shock Grav. Binding Energy GM NS m n ~ 200 MeV R NS >> Avg. Neutrino Energy � ~ 10 � 20 MeV � ⇒ (1) Final Y e ~ 0.5 set by competition btw � e +n & � e +p (2) High Entropy � � � > GM NS m n � dQ � � � S = � � T Burrows, Hayes & Fryxell 1995 R NS � T NS � � R NS �

  5. Conditions for 2nd/3rd Peak R-Process (e.g. Meyer & Brown 1997; Hoffman et al. 1997) • Low Electron Fraction Ye (fast expansion @ α formation) } • High Entropy S α -rich Freeze Out • Short Dynamical Timescale τ dyn 4 He( α n) 9 Be( α n) 12 C Bottleneck (e.g. Woosley & Hoffman 1992 ) Third-Peak Hoffman et al. 1997 Threshold: S 3 � dyn > f ( Y e )

  6. R-Process Fail Path through S- τ dyn Space (Qian & Woosley 1996; Hoffman et al. 1997; Otsuki et al. 2000; Thompson et al. 2001; Hudepohl et al. 2010) Thompson et al. 2001 Alternative Ideas Entropy Dynamical Time ⇒ 87 Rb, 88 Sr, 89 Y, 90 Zr (see talks by Roberts and Arcones)

  7. R-Process Fail Path through S- τ dyn Space (Qian & Woosley 1996; Hoffman et al. 1997; Otsuki et al. 2000; Thompson et al. 2001; Hudepohl et al. 2010) Thompson et al. 2001 Alternative Ideas • Very Massive NSs (e.g. Cardall & Fuller 1997; Thompson et al. 2001) • Neutrino Oscillations Entropy (e.g. Duan et al. 2010; but see Hudepohl et al. 2010) • Wind-SN Ejecta Interaction (e.g. Wanajo et al. 2001; Arcones et al. 2007) • Wave Heating Dynamical Time – Acoustic (Burrows et al. 2006) ⇒ 87 Rb, 88 Sr, 89 Y, 90 Zr – MHD (Suzuki & Nagataki 2005; Metzger et al. 2007) (see talks by Roberts and Arcones) • Electron Capture SNe (Ning et al. 2007; but see Hoffman et al. 2008) • Magnetic Fields & Rotation

  8. Magnetars (Thompson & Duncan 1995; Kouveliotou et al. 1998; Woods & Thompson 2006) SGR1806-20 Giant Flare December 4, 2004 Counts per second (courtesy: A. Watts & T. Strohmayer) Time (seconds)  Soft Gamma-Ray Repeaters & Anomalous X-ray Pulsars  Surface magnetic fields B dip ~ 10 14 -10 15 G  Rapid rotation at birth as source of strong fields? (e.g. α - Ω dynamo or magneto-rotational instability; Duncan & Thompson 1992; Akiyama et al. 2003)  Fairly common (at least ~10% of neutron stars are born magnetars)

  9. “Helmet - Streamer” Effects of Strong Magnetic Fields • Microphysics (EOS, Neutrino Heating & Cooling) Ω – Important for B > 10 16 G (Duan & Qian 2005) • Closed Zone Heating / Eruptions (Thompson 2003) • Magneto-Centrifugal Outflows (Weber & Davis 1967)

  10. “Helmet - Streamer” Effects of Strong Magnetic Fields • Microphysics (EOS, Neutrino Heating & Cooling) Ω – Important for B > 10 16 G (Duan & Qian 2005) • Closed Zone Heating / Eruptions (Thompson 2003) • Magneto-Centrifugal Outflows (Weber & Davis 1967) R α Top View Outflow Co-Rotates R A with Neutron Star while R heat B 2 8 � > 12 � v r 2 ⇒ 1) Magnetic Acceleration (lower τ dyn ) 2) Enhanced Mass Loss 3) Early Weak Freeze Out (lower Y e )

  11. Proto-Neutron Star Winds with Magnetic Fields & Rotation (BDM, Thompson & Quataert 2007, 2008) INPUT: “Equatorial”  NS Mass, Radius, Rotation Rate, Surface Field Strength Flux Tube  Neutrino Luminosities & Spectrum Ω  Free Outer Boundary OUTPUT: Steady-State Radial Wind Profile: ρ , T, v r , v φ , B φ   Captures 3 MHD Critical Points  Eigenvalues: Mass, Angular Momentum, & Energy Loss Rate +

  12. “Normal” Thermally-Driven Wind L � e ~ 8 � 10 51 ergs s -1 ; B 0 = 10 13 G; P =100 ms (sound speed) R A R s M ~ 10 � 4 M � s � 1 ; S ~ 70 k b nuc -1 ; � dyn ~ 25 ms ˙

  13. Magnetically-Driven Wind L � e ~ 8 � 10 51 ergs s -1 ; B 0 = 10 15 G; P =1.2 ms R A R s M ~ 3 � 10 � 3 M � s � 1 ; S ~ 20 k b nuc -1 ; � dyn ~ 0.5 ms ˙

  14. BDM et al. 2007 Dynamical Timescale 10 13 G τ dyn decreased if 10 14 G 2 G 5/ 6 � � ,10 B dip > 4 � 10 13 L � ,52 5/ 3 P ms 10 15 G

  15. BDM et al. 2007 Dynamical Timescale 10 13 G τ dyn decreased if 10 14 G 2 G 5/ 6 � � ,10 B dip > 4 � 10 13 L � ,52 5/ 3 P ms S 3 / τ dyn 10 15 G But…. MHD acceleration also decreases entropy

  16. Latitude-Dependent Wind Properties? High τ dyn Low τ dyn High S High S R α ? R A R heat Low τ dyn Low S

  17. Latitude-Dependent Wind Properties? High τ dyn Low τ dyn High S High S R α ? R A R heat Low τ dyn Low S R Ye

  18. Electron Fraction (& Mass Loss Rate) Electron Fraction ˙ M BDM et al. 2008 0.7 ms 1.6 ms To appreciably reduce Y e a ⇔ by a factor > GM NS m n R NS � enhancement in ˙ M � ~ 10

  19. Binary Compact Object Mergers NS NS NS NS NS NS BH BH Hulse-Taylor Hulse-Taylor Known Galactic NS-NS Binaries Known Galactic NS-NS Binaries Pulsar Pulsar merge ~ 10 -5 � 10 -4 yr -1 T merge = 300 = 300 Myr Myr T merge ˙ N (Kalogera ( Kalogera et al. 2004) et al. 2004)

  20. Credit: M. Shibata (U Tokyo) Credit: M. Shibata (U Tokyo)

  21. Remnant Accretion Disk Lee et al. (2004) Lee et al. (2004) • Disk Mass ~ 10 -3 - 0.1 M  & Size ~ 10-100 km • Midplane Hot (T > MeV), Dense, & Neutron Rich • Cooling via Neutrinos: ( τ γ >>1, τ ν ~ 0.01-100 ) M ~ 10 � 2 � 10 M • s -1 Accretion Rate ˙ Accretion Rate Short GRB Central Engine?

  22. Magnetized Accretion Disks MHD Turbulence MHD Turbulence Redistributes Redistributes Angular Angular Momentum Momentum J � M d ( GM BH R d ) 1/ 2 � 2 � R d J � M d BH BH Accretion ⇔ Expansion to Larger Radii Hawley & Balbus Balbus (2002) (2002) Hawley &

  23. 1D Height-Integrated Disk Evolution M d,0 = 0.1 M  , r d,0 = 30 km, α = 0.3 Angular Momentum Angular Momentum Local Disk Mass πΣ r 2 (M  ) Transport Transport (Viscous Spreading) (Viscous Spreading) Entropy Entropy Heating Heating Cooling Cooling Nuclear Composition Nuclear Composition

  24. Three Accretion 2 Phases (Metzger, Piro & Quataert 2008) 3 1 ˙ 1) High Thick Disk : H ~ R M - Optically Thick; Matter Accretes Before Cooling � e - � Neutrino-sphere Deeper (and Hotter) than Neutrino-sphere e - ν -Driven Wind with low Ye ⇒ r-Process? (e.g. Surman et al. 2006, 2008) 2) Neutrino-Cooled Thin Disk: H ~ 0.2 R ˙ - Optically Thin; Neutrino Luminosity L ν ~ 0.1 c 2 M - ν -Driven Wind with Ye > 0.5 ⇒ ν p-Process? (Kizivat et al. 2010) ˙ 3) Low Thick Disk : H ~ R M - Low Temperature ⇒ inefficient neutrino cooling & weak freeze-out

  25. Late Time Winds Late Time Winds After t ~ After t ~ 0.1-1 seconds, R ~ 500 km & 0.1-1 seconds, R ~ 500 km & T < 1 T < 1 MeV MeV • Recombination: n + p ⇒ He E BIND ~ GM BH m n /2R ~ 3 3 MeV MeV nucleon nucleon -1 -1 E BIND ~ GM BH m n /2R ~ E NUC ~ 7 7 MeV MeV nucleon nucleon -1 -1 Δ E NUC ~ Δ • Thick Disks Marginally Bound

  26. Late Time Winds Late Time Winds After t ~ After t ~ 0.1-1 seconds, R ~ 500 km & 0.1-1 seconds, R ~ 500 km & T < 1 T < 1 MeV MeV • Recombination: n + p ⇒ He } E BIND ~ GM BH m n /2R ~ 3 3 MeV MeV nucleon nucleon -1 -1 E BIND ~ GM BH m n /2R ~ Powerful Winds ⇒ E NUC ~ 7 7 MeV MeV nucleon nucleon -1 -1 Δ E NUC ~ Blow Apart Disk Δ • Thick Disks Marginally Bound M ej ~ M disk /3 ~ 10 -3 - 10 -2 M  BH Neutron-Rich Freeze- Out Composition (Metzger et al. 2008, 2009) ~20-50% of Initial Disk ~20-50% of Initial Disk Ejected Back into Space! Ejected Back into Space! (see also Lee et al. 2009)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend