fractionalization in spin systems
play

Fractionalization in spin systems An fRG perspective Dietrich - PowerPoint PPT Presentation

Fractional fRG Fractionalization in spin systems An fRG perspective Dietrich Roscher with Michael M. Scherer, Nico Gneist, Simon Trebst, Sebastian Diehl arXiv:1905.01060 Institute for Theoretical Physics / Universitt zu Kln Cold Quantum


  1. Fractional fRG Fractionalization in spin systems An fRG perspective Dietrich Roscher with Michael M. Scherer, Nico Gneist, Simon Trebst, Sebastian Diehl arXiv:1905.01060 Institute for Theoretical Physics / Universität zu Köln Cold Quantum Coffee, Heidelberg May 7th, 2019

  2. Fractional fRG High energy... “fractionalization” ATLAS Experiment c � 2016 CERN Shattering bound states by brute force

  3. Fractional fRG Fractionalization in solids [R. Willet, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, J.H. English, ’87] Low-energy Collective Effect

  4. Fractional fRG Fractionalization in solids [R. Willet, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, J.H. English, ’87] Low-energy Collective Effect Seems perfectly suited for field theory & (f)RG Extremely rich/confusing field: anyons, majoranas, gauge fields... Actual physical observables/interpretation?

  5. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16]

  6. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] :

  7. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] : ...are fancy and...

  8. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] : ...are fancy and... hot and...

  9. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] : ...are fancy and... hot and... and...

  10. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] : ...are fancy and... hot and... and... I DUNNO!!!

  11. Fractional fRG Spin systems & Spin liquids Heisenberg model: � J ij S µ i · S µ H = j � i , j � Magnetic phases (SU(2) symmetry breaking): � � S µ i � � = 0 i [F.L. Buessen, S. Trebst, ’16] Spin liquids are... [L. Savary, L. Balents ’16] : ...are fancy and... hot and... and... I DUNNO!!! Spin systems with non-magnetic but non-trivial ground states Long-range entanglement Topological order Fractionalization

  12. Fractional fRG Pseudofermion representation Spin decomposition [A.A. Abrikosov, ’65] : i ≡ 1 S µ 2 f † i α σ µ αβ f i β GIVEN: “Microscopic” Spin model: j ≃ − J � � H UV = J S µ i · S µ f † i α f j α f † j β f i β 2 � i , j � � i , j �

  13. Fractional fRG Pseudofermion representation Spin decomposition [A.A. Abrikosov, ’65] : i ≡ 1 S µ 2 f † i α σ µ αβ f i β GIVEN: “Microscopic” Spin model: j ≃ − J � � H UV = J S µ i · S µ f † i α f j α f † j β f i β 2 � i , j � � i , j � WANTED: Low-energy Spin liquid model [X.-G. Wen, ’02] � � � H IR ∼ Q ij f † i α f j α + ∆ ij ǫ αβ f † i α f † j β + h . c . + . . . � i , j � 246 different classes (symmetries of Q , ∆) Fractionalization, “Topological order” Ad hoc postulated...

  14. Fractional fRG Pseudofermion functional RG � � ∂ t Γ k = 1 ∂ t R k 2 STr Γ (2) + R k k [C. Wetterich, ’93]   � i α ( i ∂ τ ) f i α − J k � � f † f † i α f j α f † Γ k = j β f i β  2 τ i � i , j �

  15. Fractional fRG Pseudofermion functional RG � � ∂ t Γ k = 1 ∂ t R k 2 STr Γ (2) + R k k [C. Wetterich, ’93]   � i α ( i ∂ τ ) f i α − J k � � f † f † i α f j α f † Γ k = j β f i β  2 τ i � i , j � Let’s consider: SU(2) → SU( N ) “spins” on a 2D square lattice with antiferromagnetic coupling

  16. Fractional fRG Pseudofermion functional RG � � ∂ t Γ k = 1 ∂ t R k 2 STr Γ (2) + R k k [C. Wetterich, ’93]   � i α ( i ∂ τ ) f i α − J k � � f † f † i α f j α f † Γ k = j β f i β  2 τ i � i , j � Let’s consider: SU(2) → SU( N ) “spins” on a 2D square lattice with antiferromagnetic coupling Result: J k → ∞

  17. Fractional fRG Suppose we would bosonize... J k �� � n � RG 2 f † i α f j α f † � m Q Q † ij Q ij + Q ij f † � m Q , k Q † ij Q ij + U n > 2 Q † Q j β f i β � α j f α i � � � k

  18. Fractional fRG Suppose we would bosonize... J k �� � n � RG 2 f † i α f j α f † � m Q Q † ij Q ij + Q ij f † � m Q , k Q † ij Q ij + U n > 2 Q † Q j β f i β � α j f α i � � � k Second order (well...) phase transition ( m Q ∼ J − 1 k ): J k → ∞ designates onset of “some kind” of order

  19. Fractional fRG Suppose we would bosonize... J k �� � n � RG 2 f † i α f j α f † � m Q Q † ij Q ij + Q ij f † � m Q , k Q † ij Q ij + U n > 2 Q † Q j β f i β � α j f α i � � � k Second order (well...) phase transition ( m Q ∼ J − 1 k ): J k → ∞ designates onset of “some kind” of order Drawbacks of bosonization: Bias by choice of channel and/or massive cost Fierz ambiguity Spatially inhomogeneous phases?

  20. Fractional fRG Infinitesimal explicit symmetry breaking [M. Salmhofer, C. Honerkamp, W. Metzner, O. Lauscher, ’04]   � i α ( i ∂ τ ) f i α − J k � � � f † f † i α f j α f † Q ij , k f † Γ k = j β f i β + i α f j α + ...  2 τ i � i , j � � i , j � 0 . 25 Q ∞ = 10 − 2 Q ∞ = 10 − 3 Q ∞ = 10 − 5 Minimal bias as Q ∞ → 0 0 . 2 Q mf ( T ) order parameter Q New vertices (Fierz-completeness!) 0 . 15 0 . 1 Exact for SU( N → ∞ ) 0 . 05 [DR, F.L. Buessen, M.M. Scherer, S. Trebst, S. Diehl, ’18] 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 temperature T / J

  21. Fractional fRG Infinitesimal explicit symmetry breaking [M. Salmhofer, C. Honerkamp, W. Metzner, O. Lauscher, ’04]   � i α ( i ∂ τ ) f i α − J k � � � f † f † i α f j α f † Q ij , k f † Γ k = j β f i β + i α f j α + ...  2 τ i � i , j � � i , j � 0 . 25 Q ∞ = 10 − 2 Q ∞ = 10 − 3 Q ∞ = 10 − 5 Minimal bias as Q ∞ → 0 0 . 2 Q mf ( T ) order parameter Q New vertices (Fierz-completeness!) 0 . 15 0 . 1 Exact for SU( N → ∞ ) 0 . 05 [DR, F.L. Buessen, M.M. Scherer, S. Trebst, S. Diehl, ’18] 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 temperature T / J Wait a minute... symmetry breaking??

  22. Fractional fRG Symmetries... what’s real? i ≡ 1 � H UV = J 2 f † S µ i · S µ S µ i α σ µ j , αβ f i β � i , j � The obvious: Global SU(N) : better not be broken for spin liquid

  23. Fractional fRG Symmetries... what’s real? i ≡ 1 � H UV = J 2 f † S µ i · S µ S µ i α σ µ j , αβ f i β � i , j � converged order parameter | Q Λ → 0 | 0 . 25 1 0 . 9 magnetic susceptibility χ mag The obvious: 0 . 2 0 . 8 0 . 7 0 . 15 0 . 6 Global SU(N) : better not be 0 . 5 broken for spin liquid DONE 0 . 1 0 . 4 | Q MF | | Q FRG | 0 . 3 χ mag , MF 0 . 05 0 . 2 χ mag , FRG 0 . 1 0 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 temperature T / J 1

  24. Fractional fRG Symmetries... what’s real? i ≡ 1 � H UV = J 2 f † S µ i · S µ S µ i α σ µ j , αβ f i β � i , j � converged order parameter | Q Λ → 0 | 0 . 25 1 0 . 9 magnetic susceptibility χ mag The obvious: 0 . 2 0 . 8 0 . 7 0 . 15 0 . 6 Global SU(N) : better not be 0 . 5 broken for spin liquid DONE 0 . 1 0 . 4 | Q MF | | Q FRG | 0 . 3 χ mag , MF Translation invariance : 0 . 05 0 . 2 χ mag , FRG 0 . 1 Wen’s classification, but... 0 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 temperature T / J 1

  25. Fractional fRG Symmetries... what’s real? i ≡ 1 � H UV = J 2 f † S µ i · S µ S µ i α σ µ j , αβ f i β � i , j � converged order parameter | Q Λ → 0 | 0 . 25 1 0 . 9 magnetic susceptibility χ mag The obvious: 0 . 2 0 . 8 0 . 7 0 . 15 0 . 6 Global SU(N) : better not be 0 . 5 broken for spin liquid DONE 0 . 1 0 . 4 | Q MF | | Q FRG | 0 . 3 χ mag , MF Translation invariance : 0 . 05 0 . 2 χ mag , FRG 0 . 1 Wen’s classification, but... 0 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 temperature T / J 1 The not-so-obvious: Local U(1) : broken by Q ij ∼ � f † i α f j α � Artificial symmetry breaking? Actually, that’s not even all...

  26. Fractional fRG Artificial & Local Pseudofermion Spin operator: S µ i = f † i α σ µ αβ f i α � � f i ↑ f i ↓ Reformulate (for N = 2): ψ i ≡ f † − f † i ↑ i ↓ Heisenberg model: � i ψ i σ µ, T � � j ψ j σ µ, T � j = J � � S µ i · S µ ψ † ψ † H = J · Tr Tr 16 � i , j � � i , j � ...invariant under ψ i → h i ψ i with h i ∈ SU(2).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend