production of biofuel precursors
play

Production of Biofuel Precursors University of Wisconsin at Madison - PowerPoint PPT Presentation

Production of Biofuel Precursors University of Wisconsin at Madison Energy supply is a BIG problem : Fossil fuels will not last forever Straining national economy (http://express.howstuffworks.com) (


  1. Production of Biofuel Precursors University of Wisconsin at Madison

  2. • Energy supply is a BIG problem : Fossil fuels will not last forever • Straining national economy • (http://express.howstuffworks.com) ( http://www.well-surveillance.com ) •One Answer : • Biofuels through bacterial pathways Sean McMaster Biochemistry & Math

  3. • Lignin • Sorbitol – Greater access to cellulose – Crude biofuel from sugar and hemi-cellulose and solid state catalysis Sean McMaster Biochemistry & Math

  4. Cellulose Lignin ( http://www.ceres.net ) Biomass Hemicellulose Sean McMaster Biochemistry & Math

  5. Lignin peroxidase production • through E. coli Increase cellulose availability • Enhanced production of biofuels • Lignin Phanerochaete chrysosporium (http://www.ceres.net) (www.aber.ac.uk ) Lignin :: INTRO : Export : Assay : Optimization Yash Jhala Genetics

  6. Expression Export White Rot Cloned into lipD Gene Fungus E. coli Develop an Assay Optimization (http://commtechlab.msu.edu) (www.stern.de) (lpmpjogja.diknas.go.id ) Lignin Peroxidase Lignin :: INTRO : Export : Assay : Optimization Yash Jhala Genetics

  7. T7 terminator lipD X h o I Kanamycin 0 Resistance 0 0 6 n i g i O r 1 f T7-tag His-tag l i p D O e R c F n a t s i s e r 1 n 0 c i 50kDa y 0 0 m a n a K E c o R rbs 0 I 0 0 5 Lac operator pET28a-lipD Sequence pET28a-lipD Sequence 6460 bp 6460 bp T7 promoter 40kDa 0 0 0 2 c I 4 a 0 l 0 Induced protein 0 0 0 3 0 • Transformation into Rosetta-gami 2 (DE3) pLysS Lignin :: INTRO : Export : Assay : Optimization Andy Braasch Molecular Biology

  8. Lignin :: Intro : EXPORT : Assay : Optimization Ben Cox Engineering & Math

  9. Synthesized export sequences: ycdO ycbK • Fuse with lipD ycdB torA (DeLisa 2007) • Transform into E. coli A C B 1 2 3 4 5 D 1) 100bp Ladder 2) ycdO (Sec tag) 3) ycbK (TAT tag) 4) ycdB (TAT/Sec tag) 5) torA (TAT) Lignin :: Intro : EXPORT : Assay : Optimization Ben Cox Engineering & Math

  10. • Azure B vs. Veratryl Alcohol Lignin Peroxidase has higher specificity to Azure B Measured absorbance change • Oxidation of Azure B N H 3 C CH 3 N S N + H CH 3 Lignin peroxidase N CH 3 H 2 N S N + CH 3 Lignin :: Intro : Export : ASSAY : Optimization Jack Ho BME

  11. Heme group required for redox activity • Aminolevulinic acid (ALA) synthesis is the rate limiting step • Add ALA to bypass the rate limiting step • Add Fe 2+ to accommodate more heme • ALA + Fe 2+ = OH H 2 N O O Lignin :: Intro : Export : Assay : OPTIMIZATION Peter VanderVelden Biochemistry

  12. (www.stern.de) (lpmpjogja.diknas.go.id ) (http://commtechlab.msu.edu) Organic Waste (http://www.ceres.net) (http://askbobrankin.com) (www.vic.gov.au) • Lignin peroxidase • Bacterial expression and export • Increased biofuel production efficiency Lignin :: Intro : Export : Assay : OPTIMIZATION Andy Braasch Molecular Biology

  13. • Sorbitol C 6 H 14 O 6 • Aqueous phase reforming sorbitol hexane OH OH catalyst HO H 3 C OH C H 3 OH OH • Bacterial sorbitol production Sorbitol :: INTRO : Modeling : Cloning : Assay Joseph Yuen BME

  14. • The natural metabolic pathway • Knocking out phosphofructokinase • Upregulating sorbitol dehydrogenase production Nissen 2005 Sorbitol :: INTRO : Modeling : Cloning : Assay Jia Luo Biochemistry

  15. � pfk knockout RL257 and parent strain MQ obtained from E. coli Genomic Stock Center � Growth curves in C & min media performed Growth curve for RL257 and MQ 1:10 subculture MQ minMedia 1.20 absorbance at 600nm RL257 1.00 minMedia 0.80 0.60 MQ cMedia 0.40 0.20 RL257 0.00 cMedia 0 2 4 6 8 10 12 time (hours) Sorbitol :: INTRO : Modeling : Cloning : Assay Jia Luo Biochemistry

  16. Growth curve for RL257 and MQ 1:10 � pfk knockout RL257 and parent strain MQ subculture MQ minMedia 1.20 absorbance at 600nm RL257 1.00 obtained from E. coli Genomic Stock minMedia 0.80 MQ 0.60 cMedia 0.40 Center 0.20 RL257 0.00 cMedia 0 2 4 6 8 10 12 � Growth curves in C & min media time (hours) performed Growth of RL257 subculture 1:10 in C media 1.200 log (Absorbance 1.000 (600nm)) 0.800 0.600 y = 0.2199x + 0.0207 0.400 2 = 0.9917 R 0.200 n=3 0.000 0 1 2 3 4 5 6 Time (hours) � tpiA knockout obtained from the Keio collection � Growth curves in C media made Sorbitol :: INTRO : Modeling : Cloning : Assay Jia Luo Biochemistry

  17. • Computer modeling • Flux distribution • Gene knockouts • Triosephosphate isomerase O O P P - O - O O O triosephosphate - O - O isomerase O OH dihydroxyacetone glyceraldehyde-3-phosphate OH H O phosphate Sorbitol :: Intro : MODELING : Cloning : Assay Mattias Gyllborg Med Micro & Immu

  18. Sorbitol :: Intro : MODELING : Cloning : Assay Mattias Gyllborg Med Micro & Immu

  19. • Upregulating Sorbitol Dehydrogenase production • Knocking Triosephosphate Isomerase • Determine which cells have the highest sorbitol yield Nissen 2005 Sorbitol :: INTRO : Modeling : Cloning : Assay Mattias Gyllborg Med Micro & Immu

  20. � srlD gene Verification of srlD inserted into pBAD30 via digestion Sorbitol :: Intro : Modeling : CLONING : Assay Charlie Burns Biochemistry

  21. • Enzymatic assay HO SDH OH OH OH O + β -NADH + β -NAD HO OH HO H OH OH OH OH • Sorbitol Dehydrogenase Purification Cell Cultures His-Tag Nickel Column Purification (pBAD and pET Vectors) Cell Lysate • Sorbitol Quantification Enzyme assay allows for sorbitol quantification from cell lysate Sorbitol :: Intro : Modeling : Cloning : ASSAY Tanner Peelen Biochemistry

  22. Sorbitol Production • Modeling and cell growth • Upregulation • Combining in an E.coli strain Tanner Peelen Biochemistry

  23. Outlining alternative pathways • Lignin breakdown • Sorbitol production • Mass production of small hydrocarbons Tanner Peelen Biochemistry

  24. Dr. Doug Weibel Dr. Mike Sussman Dr. Ken Hammel Basudeb Bhattacharyya Dr. Jennie Reed Dr. Dan Cullen Dr. Jaehyuk Yu Matt Copeland Dr. Brian Pfleger Dr. Amber Vanden Dr. Tom Jeffries Jenna Eun Dr. Aseem Ansari Wymelenberg Dr. Kirk Kersten Hannah Tuson Dr. Franco Cerrina Dr. John Ralph Dr. Kirk Kent Shane Flickinger

  25. References Guzman L., Belin D., CarsonM., and Beckwith L. (1995). Tight regulation, modulation and high-level expression by vectors containing the arabinose • pBAD promoter. Journal of Bacteriology. 177(14): 4121-4130. Lorenzo Nissen, Gaspar Pérez-Martínez, María J. Yebra (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate • dehydrogenase gene within the lactose operon FEMS Microbiology Letters 249 (1) , 177–183 doi:10.1016/j.femsle.2005.06.010 Roe, A. J., C. O'Byrne, D. McLaggan, and I. R. Booth. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and • homocysteine toxicity. Microbiology 148:2215-2222. Ladero, V., Ramos, A., Wiersma, A., Goffin, P., Schanck, A., Kleerebezem, M., et al. (2007) High-level production of the low-calorie sugar sorbitol by • Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73: 1864–1872. Metzger J (2006) Production of liquid hydrocarbons from biomass. Angew. Chem. Int. Ed. 2006, 45, 696-698. • Lovingshimera, M. R., Siegeleb, D., & Reinharta, G. D. (2006). Construction of an inducible, pfkA and pfkB deficient strain of Escherichia coli for the • expression and purification of phosphofructokinase from bacterial sources. Protein Expression and Purification , 46 (2), 475-482. Karacao ğ lan, V., & Özer, I. (2005). Steady-state kinetic properties of sorbitol dehydrogenase from chicken liver. Comparative Biochemistry and Physiology , 140 , • 309-312. Archibald, F. S. A new assay for lignin-type peroxidases employing the dye azure B. Applied and Environmental Microbiology, 58(9), 3110-3116. • The International Energy Agency. 26 Aug. 2008. Biofuels for Transport: An International Perspective. April 2004. • http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf Doyle, Wendy A., Andrew T. Smith. “Expression of lignin peroxidase H8 in Escherichia coli : folding and activation of the recombinant enzyme with Ca 2+ and • haem.” Biochemistry Journal 315 (1996):15-19. Hammel, Kenneth E., Dan Cullen. “Role of fungal peroxidases in biological ligninolysis.” Current Opinion in Plant Biology 11 (2008): 349-355. • “Cellulose.” Encyclopedia Britannica. 2008. Encyclopedia Britannica Online. 28 Oct. 2008. • DeLisa, Matthew P., Danelle Tullman, and George Georgiou. “Folding quality in export of proteins by the bacterial twin arginine translocation pathway.” • Proceedings of the National Academy of Sciences 100 (2003):6155-6120. Tullman-Ereck, Danielle, Matthew P. DeLisa, Yasuaki Kawarasaki, Pooya Iranpour, Brian Ribnicky, Tracy Palmer, and George Georgiou. “Export Pathway • Selectivity of E. coli Twin Arginine Translocation Signal Peptides.” Journal of Biological Chemistry 282 (2007): 8309-83116. Brenda: the comprehensive enzyme information system. 2008.2. Technical University of Braunschweig Department of Bioinformatics and Biochemistry. 2 • July 2008. <http://www.brenda-enzymes.info/>

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend