print version
play

Print version Updated: 4 March 2020 Lecture #25 Dissolved Carbon - PowerPoint PPT Presentation

Print version Updated: 4 March 2020 Lecture #25 Dissolved Carbon Dioxide: Open & Closed Systems VI (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 7 David Reckhow CEE 680 #25 1 Lake Erie David Reckhow CEE 680 #25 2 Lake


  1. Print version Updated: 4 March 2020 Lecture #25 Dissolved Carbon Dioxide: Open & Closed Systems VI (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 7 David Reckhow CEE 680 #25 1

  2.  Lake Erie David Reckhow CEE 680 #25 2

  3.  Lake Taihu David Reckhow CEE 680 #25 3

  4.  algae David Reckhow CEE 680 #25 4

  5.  Algal cells David Reckhow CEE 680 #25 5

  6. Photosynthesis Problem  Principles of conservation of Alk and C T  From Stumm & Morgan (example 4.8, pg. 174)  Approach  General: assume that system is closed  Simplified: treat alkalinity as constant  Alternative: allow alkalinity to vary in accordance with reaction stoichiometry David Reckhow CEE 680 #25 6

  7. Problem Statement  Photosynthesis with nitrate assimilation - + HPO 4 -2 + 122 H 2 O + 18 H +  106 CO 2 + 16 NO 3 = C 106 H 263 O 110 N 16 P + 138 O 2  Conditions  Initial  Alk = 0.85 meq/L  pH = 9.0  Final (3 hours later)  pH = 9.5  What is the net rate of carbon fixation? David Reckhow CEE 680 #25 7

  8. Simplified Solution: (const. alk.)  Use standard alkalinity equation − − ( ) = α + α + + Alk 2 C [ OH ] [ H ] 1 2 T 1 1 α = ≈ ≈ 0 . 9523 1 + + − 10 . 3 [ H ] + + K 1 10 1 2 −  So initially: 9 + K 10 [ H ] 1 0 − + − + Alk [ OH ] [ H ] = C T 1 1 α = ≈ ≈ α + α 0 . 0477 2 2 + + − + 1 2 2 9 + + [ H ] [ H ] 10 1 1 − 10 . 3 − − − + − K K K 10 4 5 9 8 . 5 x 10 10 10 1 2 2 = 0 + 0 . 9523 2 ( 0 . 0477 ) − = 4 8 . 017 x 10 M David Reckhow CEE 680 #25 8

  9. Simplified Solution: (const. alk.) 1 1 α = ≈ ≈ 0 . 8632  And 3 hours later 1 + + − 10 . 3 + + K 1 [ H ] 10 1 2 − 9 . 5 K + 10 [ H ] 1 − + − + Alk [ OH ] [ H ] 0 = C T α + α 2 1 1 1 2 α = ≈ ≈ 0 . 1368 − − − − − 4 4 . 5 9 . 5 8 . 5 x 10 10 10 2 + + − 2 9 . 5 + + + 1 [ H ] [ H ] 10 1 = − 10 . 3 K K K 10 1 2 2 + 0 . 8632 2 ( 0 . 1368 ) 0 − = 4 7 . 199 x 10 M  So the rate is: − − − 4 4 ∆ 8 . 017 x 10 M 7 . 199 x 10 M C T = ∆ t 3 hr = − 5 2 . 7 x 10 M / hr David Reckhow CEE 680 #25 9

  10. Alternative Solution  Allow alkalinity to vary in accordance with reaction ∆ = + Alk Alk C stoichiometry 18 f i T 106 - + HPO 4 -2 + 122 H 2 O + 18 H +  106 CO 2 + 16 NO 3 = C 106 H 263 O 110 N 16 P + 138 O 2  Now, incorporating this into the final alkalinity value: ( ) − + = α + α + − Alk 2 C [ OH ] [ H ] 1 2 T ) ( ) ( − ∆ − = α + α − Alk [ OH ] 2 C C f f 1 2 T T f i ( ) − + ∆ − − = − − ∆ 4 4 . 5 4 8 . 5 x 10 18 C 10 1 . 136 8 . 017 x 10 C T T 106 ∆ = − 5 1 . 3066 C 9 . 2995 x 10 T ∆ = − 5 C 7 . 1 x 10 T  And the rate becomes: − 5 ∆ 7 . 1 x 10 M C T − = = 5 2 . 4 x 10 M / hr ∆ t 3 hr David Reckhow CEE 680 #25 10

  11. Buffer Intensity & Closed System ( ) − + β ≈ + + α α + α α 2 . 303 [ OH ] [ H ] C C T 0 1 T 1 2 From: Butler, 1991; pg 67 David Reckhow CEE 680 #25 11

  12. Buffer Intensity & Open System ( ) β = − + + + − + − 2 2 . 303 [ OH ] [ H ] [ HCO ] 4 [ CO ] 3 3 From: Butler, 1991; pg 68 David Reckhow CEE 680 #25 12

  13.  To next lecture DAR David Reckhow CEE 680 #25 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend