on the volume conjecture for quantum 6 j symbols
play

On the volume conjecture for quantum 6 j symbols Jun Murakami - PowerPoint PPT Presentation

On the volume conjecture for quantum 6 j symbols Jun Murakami Waseda University July 27, 2016 Workshop on Teichmller and Grothendieck-Teichmller theories Chern Institute of Mathematics, Nankai University Quantum Invariants Volume


  1. On the volume conjecture for quantum 6 j symbols Jun Murakami Waseda University July 27, 2016 Workshop on Teichmüller and Grothendieck-Teichmüller theories Chern Institute of Mathematics, Nankai University

  2. Quantum Invariants Volume Conjecture Quantum 6 j symbol Contents Quantum Invariants Volume Conjecture Quantum 6 j symbol 2/22

  3. Quantum Invariants Volume Conjecture Quantum 6 j symbol Overview Quantum Invariants Volume Conjecture Quantum 6 j symbol 3/22

  4. Quantum Invariants Volume Conjecture Quantum 6 j symbol Jones Polynomial ▶ Jones polynomial (1984) ` U q ( sl 2 ) t 1 = 2 ` t ` 1 = 2 ” t ` 1 V K ` ( t ) ` t V K + ( t ) = “ V K 0 K + : K ` : K 0 : j K 1 j : Cf. Alexander polynomial r K + ( z ) `r K ` ( z ) = z r K 0 ( z ) ▶ HOMFLY-PT polynomial (1987) ` U q ( sl n ) a ` 1 P K ` ( t ) ` a P K + ( t ) = t 1 = 2 ` t ` 1 = 2 ” “ P K 0 ▶ Kauffman polynomial (1987) ` U q ( so n ) ; U q ( sp 2 n ) a ` 1 F j K ` j ( t ) ` a F j K + j ( t ) = t 1 = 2 ` t ` 1 = 2 ” “ “ ” F j K 0 j ` F j K 1 j 4/22

  5. Quantum Invariants Volume Conjecture Quantum 6 j symbol Overview Quantum Invariants Volume Conjecture Quantum 6 j symbol 5/22

  6. Quantum Invariants Volume Conjecture Quantum 6 j symbol Kashaev’s conjecture Let L be a knot and K N ( L ) be the quantum invariant introduced by Kashaev. Then 2 ı N log j K N ( L ) j = Vol ( S 3 n L ) : lim N !1 N ` 1 k X j ( q ) k j 2 , Y ( 1 ` q j ) K N ( 4 1 ) = ( q ) k = 4 1 : j = 1 k = 0 ` ! 2.02988321. . . N !1 q ` k ( l + 1 ) = 2 ( q ) 2 X K N ( 5 2 ) = l ( q ` 1 ) k 5 2 : k » l ` ! 2.82812208. . . N !1 q ( m ` k ` l )( m ` k + 1 ) = 2 j ( q ) m j 2 X K N ( 6 1 ) = 6 1 : ( q ) k ( q ` 1 ) l k + l » m ` ! 3.16396322. . . N !1 K N ( L ) is equal to the colored Jones inv. V N L ( q ) for N -dim. rep. of U q ( sl 2 ) at q = exp 2 ı p` 1 = N . ( H. M urakami -J.M. ) 6/22

  7. Quantum Invariants Volume Conjecture Quantum 6 j symbol Generalizations of Kashaev’s Conjecture s N = exp ( ı p` 1 = N ) , q N = s 2 N . Volume Conjecture. ( H. M urakami -J.M. ) L : a knot 2 ı ˛ = Vol Gr ( S 3 n L ) ; ˛ ˛ ˛ V N lim N log L ( q N ) ˛ ˛ N !1 where Vol Gr is Gromov’s simplicial volume. Complesified Volume Conjecture ( H.M urakami -J.M.-M.O kamoto -T.T akata -Y.Y okota ) L : hyperbolic knot 2 ı L ( q N ) = Vol ( S 3 n L ) + q ` 1 CS ( S 3 n L ) : N log V N lim N !1 7/22

  8. Quantum Invariants Volume Conjecture Quantum 6 j symbol Proof for the figure-eight knot ( E kholm ) s N = exp ( ı p` 1 = N ) , q N = s 2 K : figure-eight knot, N . N ` 1 N ` 1 j j 4 sin 2 ı k X X Y Y ( s N ` k ` s ` N + k )( s N + k ` s ` N ` k V N K ( s N ) = ) = N : N N N N k = 1 k = 1 j = 0 j = 0 Q j k = 1 4 sin 2 ı k Let a j = N and a j max be the max. term of a j . Since a j max » V N K ( s N ) » N a j max , 2 ı log V N K ( s N ) 2 ı log a j max 2 ı log ( N a j max ) 2 ı log ( a j max ) lim » lim » lim = lim : N N N N N !1 N !1 N !1 N !1 a j is decreasing for small j ’s, increasing for middle j ’s and then decreasing for large j ’s. It takes the maximal at j ≒ 5 N 6 . Since a 0 = 1, a N ` 1 = N 2 , a j is maximum at j ≒ 5 N 6 . Therefore P 5 N = 6 4 ı k = 1 log ( 2 sin ı k = N ) 2 ı log ( a j max ) lim = lim = N !1 N N !1 N 5 ı 5 ı ! Z 6 4 log ( 2 sinx ) dx = ` 4 ˜ = 2 : 02988321 ::: 6 0 8/22

  9. Quantum Invariants Volume Conjecture Quantum 6 j symbol Volume potential function ▶ Dilogarithm function Analytic continuation of Z x du = x + x 2 2 2 + x 3 log ( 1 ` u ) Li 2 ( x ) = ` 3 2 + ´ ´ ´ ( 0 < x < 1 ) : u 0 It is a multi-valued function and its branches are q ` 1 log z + 4 l ı 2 li 2 ( z ) = Li 2 ( z )+ 2 k ı ( k ; l 2 Z ) ▶ Volume potential function U ( x 1 ; x 2 ; : : : ) The function obtained by replacing ( q ) k in U q ( sl 2 ) -invariant by Li 2 ( x ) ( x = q k N ). ▶ Saddle points of the volume potential function Points satisfying @ U = 0 ( i = 1 ; 2 ; : : : ). @ x i These equations correspond to the glueing equation of the tetrahedral decomposition ( Y okota ). 9/22

  10. Quantum Invariants Volume Conjecture Quantum 6 j symbol Hyperbolic volume from the saddle point K : hyperbolic knot, U : Volume potential function of V N K ( q N ) (colored Jones) ▶ Hyperbolic volume @ U ! ( 0 ) ( 0 ) For some x , x , : : : satisfying exp = 1, 1 2 @ x i ˛ @ U ( 0 ) ( 0 ) X ˛ ( 0 ) U ( x ; x ; : : : ) ` log x ˛ 1 2 i ˛ @ x i ˛ x 1 = x ( 0 ) ; ´´´ i 1 is the hyperbolic volume of the complement of K ( Y okota , J. C ho ). ▶ Optimistic calculation ( H.M urakami , arXiv:math/0005289 ) M : 3-manifold , fi N ( M ) : W itten -R eshetikhin - T uraev invariant Check that fi N ( M ) ` ! hyperoblic volume of M for M obtained by surgery along the figure-eight knot. ▶ Optimistic conjecture U q ( sl 2 ) inariant ` ! hyperbolic volume 10/22

  11. Quantum Invariants Volume Conjecture Quantum 6 j symbol ! q 2 q N ` N Attention! ▶ The U q ( sl 2 ) -invariant grows exponentially only for Kashaev’s invariant and its deformation. ▶ For other U q ( sl 2 ) -invariants, they does not grow exponentially. Renovation by Q. C hen -T. Y ang arXiv:1503.02547 ▶ Replace q N = exp ( 2 ı p` 1 = N ) by q 2 N . ▶ Various U q ( sl 2 ) -invariants grow exponentially and the growth rates are given by the hyperbolic volume of the corresponding geometric objects. Including: WRT invariant, Turaev-Viro inv. for 3-mfds, Kirillov-Reshetikhin invariant for knotted graphs 11/22

  12. Quantum Invariants Volume Conjecture Quantum 6 j symbol Overview Quantum Invariants Volume Conjecture Quantum 6 j symbol 12/22

  13. Quantum Invariants Volume Conjecture Quantum 6 j symbol Quantum 6 j symbol The quantum 6 j symbol is introduced to express 0 1 ȷ i 0 1 V m , ! V m , ! ff j l X A = V l ˙ V k , ! V i ˙ V n , ! @ @ A m k n V i ˙ V j ˙ V k q V i ˙ V j ˙ V k n for representations of U q ( sl 2 ) by Kirillov-Reshetikhin . f k g = f q 1 = 2 ` q ` 1 = 2 g ; f k g ! = f k g f k ` 1 g : : : f 1 g ; f c 1 + c 2 + c 3 + 1 g ! W 1 ( e ) = f c + 1 g 2 ; W 2 ( f ) = ; f 1 g f 1 g f ` c 1 + c 2 + c 3 g ! f c 1 ` c 2 + c 3 g ! f c 1 + c 2 ` c 3 g ! 2 2 2 ȷ c 1 ff c 2 c 5 „ c 1 « c 2 c 5 ff RW c 4 c 3 c 6 ȷ c 1 c 4 c 3 c 6 c 2 c 5 q = p = p W 2 ( 1 ; 2 ; 5 ) W 2 ( 1 ; 3 ; 6 ) W 2 ( 2 ; 4 ; 6 ) W 2 ( 3 ; 4 ; 5 ) ; c 4 c 3 c 6 W 1 ( c 5 ) W 1 ( c 6 ) q min ( A 1 ;:::; A 3 ) ( ` 1 ) k f k + 1 g ! „ c 1 « c 2 c 5 X = f 1 g f A 1 ` k g ! : : : f A 3 ` k g ! f k ` B 1 g ! : : : f k ` B 4 g ! ; c 4 c 3 c 6 k = max ( B 1 ; ´´´ ; B 4 ) where 2 A 1 = c 1 + c 2 + c 3 + c 4 ; 2 B 1 = c 1 + c 2 + c 5 ; 2 A 2 = c 1 + c 4 + c 5 + c 6 ; 2 B 2 = c 1 + c 3 + c 6 ; 2 A 3 = c 2 + c 3 + c 5 + c 6 ; 2 B 3 = c 2 + c 4 + c 6 ; 2 B 4 = c 3 + c 4 + c 5 : Here we assume c 1 , ´ ´ ´ , c 6 are admissible, i.e. A i , B j , A i ` B j 2 Z – 0 . 13/22

  14. Quantum Invariants Volume Conjecture Quantum 6 j symbol Turaev-Viro invariant State sum on a tetrahedral decomposition ı p N ` s ` k s k ` 1 Let s N = exp ( ) , [ k ] = N , [ k ]! = [ k ][ k ` 1 ] ´ ´ ´ [ 1 ] , N s N ` s ` 1 N I N = f 0 ; 1 ; : : : ; N ` 2 g . ▶ Turaev-Viro invariant Let M be a closed 3-manifold and let ´ be a tetrahedral decomposition of M . Let T , F , E be the set of tetrahedrons, faces, edges of ´ . Then X Y Y W 2 ( f ) ` 1 Y TV N ( M ) = W 1 ( e ) W 3 ( t ) : e 2 E f 2 F t 2 T ’ : E ! I N admissible TV ! potential fun. ! saddle pt. ! hyp. volume ▶ Quantum 6 j symbol quantum 6 j ! potential function ! saddle point ! hyperbolic volume symbol of tetrahedron ( J. M.-M. Y ano ) 14/22

  15. Quantum Invariants Volume Conjecture Quantum 6 j symbol ! q 2 Chen-Yang’s invariant and q ` Let s N = exp ( ı p` 1 = N ) and q N = s 2 N . ▶ Chen-Yang’s invariant Extend TV-invariant for 3-manifolds with boundary by using ideal tetrahedrons and truncated tetrahedrons. Conjecture (Q.Chen-T.Yang, arXiv:1503.02547) Let M be a 3-manifold , N be a positive odd integer, CY N ( M ) be Chen-Yang’s invariant, fi N ( M ) be the WRT invariant, and TV N ( M ) be the Turaev-Viro invariant of M . Then we have „ « q 2 ı 1. lim log CY N ( M ) j s N ! s 2 = Vol ( M ) + ` 1 CS ( M ) N N !1 N „ « q 4 ı 2. lim log fi N ( M ) j s N ! s 2 = Vol ( M ) + ` 1 CS ( M ) N N !1 N „ « 2 ı 3. lim log TV N ( M ) j s N ! s 2 = Vol ( M ) ; N N !1 N since 2. and the fact that TV N ( M ) = j fi N ( M ) j 2 . 15/22

  16. Quantum Invariants Volume Conjecture Quantum 6 j symbol Volume conjecture for the quantum 6 j symbol Conjecture T : hyperbolic tetrahedron with dihedral angles „ 1 , : : : , „ 6 , N : positive odd integer, ( N ) ( N ) 2 ı : admissible sequences with lim = ı ` „ i , a N a i i N !1 (1 » i » 6) Then ˛ ˛ RW 8 ( N ) ( N ) ( N ) 9 ˛ ˛ 2 ı a a a ˛ < = ˛ 1 2 5 lim log = Vol ( T ) : ˛ ˛ ( N ) ( N ) ( N ) ˛ ˛ N !1 N a a a ˛ : ; ˛ 4 3 6 q 2 ˛ ˛ N Theorem The above conjecture is true if all the vertices are truncated, i.e. the sum of the three dihedral angles sharing a vertex is less than ı . 16/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend