resolving m c and m b in precision higgs boson analyses
play

Resolving m c and m b in precision Higgs boson analyses Zhengkang - PowerPoint PPT Presentation

Resolving m c and m b in precision Higgs boson analyses Zhengkang Zhang University of Michigan Based on A. A. Petrov, S. Pokorski, J. D. Wells, ZZ, Phys. Rev. D 91 , 073001 (2015) [arXiv:1501.02803 [hep-ph]] Zhengkang Zhang (U Michigan)


  1. Resolving m c and m b in precision Higgs boson analyses Zhengkang Zhang University of Michigan Based on A. A. Petrov, S. Pokorski, J. D. Wells, ZZ, Phys. Rev. D 91 , 073001 (2015) [arXiv:1501.02803 [hep-ph]] Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 1 / 16

  2. Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 2 / 16

  3. Introduction: the precision frontier Measure its properties very precisely! (BSM hints?) TeV ) 2 ∼ O (1%) . ◮ Theory expectation: ( v ◮ Experiment expectation: (sub)percent-level measurements of Γ H → c ¯ c , Γ H → b ¯ b at HL-LHC, ILC, FCC-ee, CEPC. [Asner et al , 1310.0763] [Peskin, 1312.4974] [Fan, Reece, Wang, 1411.1054] [Ruan, 1411.5606] Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 3 / 16

  4. Introduction: the precision frontier Measure its properties very precisely! (BSM hints?) TeV ) 2 ∼ O (1%) . ◮ Theory expectation: ( v ◮ Experiment expectation: (sub)percent-level measurements of Γ H → c ¯ c , Γ H → b ¯ b at HL-LHC, ILC, FCC-ee, CEPC. [Asner et al , 1310.0763] [Peskin, 1312.4974] [Fan, Reece, Wang, 1411.1054] [Ruan, 1411.5606] Will future experiments be sensitive to %-level new physics effects? No, unless theory uncertainties can be reduced to below O (1%) ! Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 3 / 16

  5. Motivation: theory uncertainties in Γ H → c ¯ c , Γ H → b ¯ b Where are the theory uncertainties from? ◮ Perturbative uncertainty well below 1%, thanks to N 4 LO calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063] . Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 4 / 16

  6. Motivation: theory uncertainties in Γ H → c ¯ c , Γ H → b ¯ b Where are the theory uncertainties from? ◮ Perturbative uncertainty well below 1%, thanks to N 4 LO calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063] . ◮ Parametric uncertainties dominate, especially a few % from input quark masses m c , m b : ∆Γ H → c ¯ ≃ ∆ m c ( m c ) ∆Γ H → b ¯ ≃ ∆ m b ( m b ) c b 10 MeV × 2 . 1% , 10 MeV × 0 . 56% . Γ H → c ¯ Γ H → b ¯ c b where m Q ( m Q ) ≡ m MS Q ( µ = m Q ) . [Denner, Heinemeyer, Puljak, Rebuzzi, Spira, 1107.5909] [Almeida, Lee, Pokorski, Wells, 1311.6721] [Lepage, Mackenzie, Peskin, 1404.0319] etc. cf. PDG: m c ( m c ) = 1 . 275(25) GeV, m b ( m b ) = 4 . 18(3) GeV. Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 4 / 16

  7. Motivation: theory uncertainties in Γ H → c ¯ c , Γ H → b ¯ b Where are the theory uncertainties from? ◮ Perturbative uncertainty well below 1%, thanks to N 4 LO calculations [Baikov, Chetyrkin, Kuhn, hep-ph/0511063] . ◮ Parametric uncertainties dominate, especially a few % from input quark masses m c , m b : ∆Γ H → c ¯ ≃ ∆ m c ( m c ) ∆Γ H → b ¯ ≃ ∆ m b ( m b ) c b 10 MeV × 2 . 1% , 10 MeV × 0 . 56% . Γ H → c ¯ Γ H → b ¯ c b where m Q ( m Q ) ≡ m MS Q ( µ = m Q ) . [Denner, Heinemeyer, Puljak, Rebuzzi, Spira, 1107.5909] [Almeida, Lee, Pokorski, Wells, 1311.6721] [Lepage, Mackenzie, Peskin, 1404.0319] etc. cf. PDG: m c ( m c ) = 1 . 275(25) GeV, m b ( m b ) = 4 . 18(3) GeV. Goal: understand this uncertainty propagation in more detail. Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 4 / 16

  8. Precision Higgs analyses: conventional approach Use PDG quark masses or other averaged quark masses as inputs. Unsatisfactory: ◮ Correlations among the entries neglected ◮ Correlation with α s neglected ◮ Uncertainties underestimated and inflated [Dehnadi, Hoang, Mateu, Zebarjad, 1102.2264] Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 5 / 16

  9. Precision Higgs analyses: proposed approach PDG averaged quark masses are dominated by m c , m b determinations from low-energy observables † , e.g. ◮ e + e − → Q ¯ Q cross sections; ◮ Kinematic distributions of semileptonic B decay. † For the prospect of lattice calculations see [Lepage, Mackenzie, Peskin, 1404.0319] . Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 6 / 16

  10. Precision Higgs analyses: proposed approach PDG averaged quark masses are dominated by m c , m b determinations from low-energy observables † , e.g. ◮ e + e − → Q ¯ Q cross sections; ◮ Kinematic distributions of semileptonic B decay. A global analysis!       O Higgs � � Inputs  O low      ( m c , m b , α s , . . . ) ( m c , m b , α s , . . . )       1  1                  m c � O Higgs  O low     �  ( m c , m b , α s , . . . ) ( m c , m b , α s , . . . ) 2 2 m b ⇐ ⇒ � O Higgs O low �  ( m c , m b , α s , . . . )      ( m c , m b , α s , . . . )       3 α s      3              . . .       . . . . . . † For the prospect of lattice calculations see [Lepage, Mackenzie, Peskin, 1404.0319] . Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 6 / 16

  11. Precision Higgs analyses: proposed approach ... just like what we have done before! Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 7 / 16

  12. b in terms of M c 1 , M b A first calculation: Γ H → c ¯ c , Γ H → b ¯ 2 To see the role of low-energy observables in this precision Higgs boson analyses, we will ◮ focus on Γ H → c ¯ c , Γ H → b ¯ b , and ◮ eliminate m c , m b from the input in favor of M c 1 , M b 2 . “ n th moment of R Q ”: � where R Q ≡ σ ( e + e − → Q ¯ d s QX ) M Q n ≡ s n +1 R Q ( s ) , σ ( e + e − → µ + µ − ) . Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 8 / 16

  13. b in terms of M c 1 , M b A first calculation: Γ H → c ¯ c , Γ H → b ¯ 2 Moments of R Q are calculated by relativistic quarkonium sum rules [Novikov, Okun, Shifman, Vainshtein, Voloshin, Zakharov, Phys. Rept. 41, 1 (1978)] � d � n � � s n +1 R Q ( s ) = 12 π 2 � d s M Q Π Q ( q 2 ) � n = , where � d q 2 n ! q 2 =0 � ( q 2 g µν − q µ q ν )Π Q ( q 2 ) = − i d 4 x e iq · x � 0 | Tj µ ( x ) j † ν (0) | 0 � , via an operator product expansion (OPE) � � 2 � α s ( µ α ) � i � Q Q / (2 / 3) ln a m Q ( µ m ) 2 ln b m Q ( µ m ) 2 M Q C ( a,b ) + M Q, np n = n,i ( n f ) . � � 2 n n π µ m 2 µ α 2 2 m Q ( µ m ) i,a,b Low moments (small n ) are preferred to suppress M Q, np . n Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 9 / 16

  14. b in terms of M c 1 , M b A first calculation: Γ H → c ¯ c , Γ H → b ¯ 2 � � 2 � α s ( µ α ) � i � ln a m Q ( µ m ) 2 ln b m Q ( µ m ) 2 Q Q / (2 / 3) C ( a,b ) + M Q, np M Q n = n,i ( n f ) . � � 2 n n µ m 2 µ α 2 π 2 m Q ( µ m ) i,a,b Best calculations available: ◮ C ( a,b ) n,i ( n f ) : up to i = 3 [Maier, Maierhofer, Marquard, Smirnov, 0907.2117] . ◮ M Q, np : up to NLO [Broadhurst, Baikov, Ilyin, Fleischer, Tarasov, Smirnov, n hep-ph/9403274] , kept only for charm. Renormalization scales: µ m for m Q , µ α for α s . Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 10 / 16

  15. b in terms of M c 1 , M b A first calculation: Γ H → c ¯ c , Γ H → b ¯ 2 � � 2 � α s ( µ α ) � i � Q Q / (2 / 3) ln a m Q ( µ m ) 2 ln b m Q ( µ m ) 2 M Q C ( a,b ) + M Q, np n = n,i ( n f ) . � � 2 n n π µ m 2 µ α 2 2 m Q ( µ m ) i,a,b � � � α , M c, np α s , M c 1 , µ c m , µ c m c ( m c ) = m c ( m c ) , 1 ⇒ � � α s , M b 2 , µ b m , µ b m b ( m b ) = m b ( m b ) . α [Kuhn, Steinhauser, hep-ph/0109084] [Kuhn, Steinhauser, Sturm, hep-ph/0702103] [Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm, 0907.2110] Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 11 / 16

  16. b in terms of M c 1 , M b A first calculation: Γ H → c ¯ c , Γ H → b ¯ 2 � � 2 � α s ( µ α ) � i � Q Q / (2 / 3) ln a m Q ( µ m ) 2 ln b m Q ( µ m ) 2 M Q C ( a,b ) + M Q, np n = n,i ( n f ) . � � 2 n n π µ m 2 µ α 2 2 m Q ( µ m ) i,a,b � � � α , M c, np α s , M c 1 , µ c m , µ c m c ( m c ) = m c ( m c ) , 1 ⇒ � � α s , M b 2 , µ b m , µ b m b ( m b ) = m b ( m b ) . α [Kuhn, Steinhauser, hep-ph/0109084] [Kuhn, Steinhauser, Sturm, hep-ph/0702103] [Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm, 0907.2110] Should keep µ m � = µ α , otherwise perturbative uncertainty will be underestimated (common in the literature). [Dehnadi, Hoang, Mateu, Zebarjad, 1102.2264] [Dehnadi, Hoang, Mateu, 1504.07638] Zhengkang Zhang (U Michigan) Resolving m c and m b (1501.02803) CHARM 2015, WSU, Detroit 11 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend