higgs boson searches at the tevatron
play

Higgs Boson Searches at the Tevatron Harald Fox Department of - PowerPoint PPT Presentation

Higgs Boson Searches at the Tevatron Harald Fox Department of Physics h.fox@lancaster.ac.uk Contents evatron, D and CDF T Higgs production Search for heavy Higgs H WW ll b jet Search for light Higgs WH l bb ZH


  1. Higgs Boson Searches at the Tevatron Harald Fox Department of Physics h.fox@lancaster.ac.uk

  2. Contents evatron, DØ and CDF T Higgs production Search for heavy Higgs H → WW → ll νν b jet Search for light Higgs WH → l ν bb ̅ ZH → νν bb ̅ ZH → llbb ̅ Outlook b jet Conclusion

  3. The Standard Model H Kane, Scientific American, June 2003 • W + W − H • • • H • W + W −

  4. The Higgs Mechanism ‣ The Higgs field acquires a vacuum expectation value � − µ 2 v = 2 λ = 246GeV ‣ Particles interact with the Higgs field and acquire an effective mass V( Ф )= μ 2 | Ф |+ λ (| Ф | 2 ) 2 = 0 m γ 1 = ‣ The mass relation between m W 2 vg γ , W and Z bosons is 1 1 = m Z 2 vg cos θ W determined √ 2 λ v 2 = ‣ Couplings and branching m H 1 ratios are determined. = m f 2 g f v √

  5. Constraints on the Higgs Mass Kolda, Murayama: JHEP 0007 (2000) 035 ‣ Excluded by LEP 600 Triviality m H < 144 GeV 95%C.L. 500 m Limit = 144 GeV 6 Higgs mass (GeV) Theory uncertainty 400 ∆α (5) ∆α had = 5 0.02758 ± 0.00035 0.02749 ± 0.00012 Electroweak 300 incl. low Q 2 data 4 Fine Tuning Δ FT < 10%/1% ∆χ 2 10% 200 3 1% 2 100 Vacuum Stability 2 1 10 10 1 � (TeV) Excluded Preliminary 0 30 100 300 m H [ GeV ] LEP EWWG

  6. Tevatron

  7. Delivered Recorded Run IIa 1.6 fb -1 1.3 fb -1 Run IIb (so far) 1.9 fb -1 1.7 fb -1 Total 3.5 fb -1 3.0 fb -1 2006 shutdown: • new Layer 0 silicon installed • trigger upgrades installed Passed 3fb -1 milestone in recorded luminosity on 16 January 2008 Run IIa Run IIb April 02 Jan 08

  8. Two General Purpose Detectors: CDF DØ Electron acceptance | η |<2.0 | η |<3.0 Muon acceptance | η |<1.5 | η |<2.0 Silicon Precision tracking | η |<2.0 | η |<3.0 Hermetic Calorimeter | η |<3.6 | η |<4.2 Powerful trigger systems (2.5MHz → 50Hz) Dilepton triggers with p T >4GeV Tracker Solenoid Magnet protons antiprotons 3 Layer Muon System

  9. Tevatron Cross Sections Total inelastic cross section. Light quarks are ubiquitous. Plenty of W and Z bosons → calibration. Evidence of single top production is an important milestone towards the Higgs boson. The Higgs cross section is 10-11 orders of magnitudes lower than the total inelastic cross section.

  10. Higgs Production and Decay cross section (pb)

  11. ℓ ℓ ℓ ℓ ℓ ℓ High Mass Higgs Channels Angular correlation of leptons due to V − A as H is a spin 0 particle: e + W + ν n W - e - • final states with charged leptons: ‣ e ± e ∓ L=1.2 fb − 1 entries entries 5 5 10 10 e + e − data DØ Run II ‣ e ± µ ∓ ← counts twice Preliminary 4 4 10 10 H → WW × 10 160 ‣ µ ± µ ∓ 3 3 10 10 Z → e e 2 2 10 10 ‣ l ± τ ∓ h ← difficult Diboson 10 10 W+jets/ γ • hadronic final state: 1 1 QCD ‣ very difficult -1 -1 10 10 ttbar 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 4 4 ∆ ∆ φ φ (e,e) (e,e)

  12. ℓ ℓ ℓ ℓ ℓ ℓ High Mass Higgs Channels Before Cut Z � � � After HT Cut, M =160 After Preselection, M =160 Before Cut Z � � � H WZ H Z � � � QCD 2 2 10 10 QCD t t QCD }(250-500) 4 4 t t 10 10 10 10 � QCD t t � t t ZZ 10 10 3 3 10 10 ZZ 10 10 WW ZZ WZ W WZ � µ � WZ 2 2 WW 10 10 1 1 1 1 Z � µ µ ZZ Z � µ µ W � µ � 10 10 W W � µ � � � µ � Z � � � 1 1 Z � µ µ WW WW -1 -1 Z � µ µ 10 10 1 1 Data Data Data -1 -1 Data 10 10 H120 -1 -1 H160 10 10 H160 H160 -2 -2 10 10 • 2 leptons with high p T -1 -1 10 10 -2 -2 10 10 0 0 20 20 40 40 60 60 80 80 100 120 100 120 140 160 180 140 160 180 200 220 240 200 220 240 • Isolation of e/µ against QCD and b-jets -2 -2 10 10 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 400 400 450 450 500 500 M M / GeV / GeV 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 µ µ µ µ HT / GeV HT / GeV � � � � ( ( µ µ , , µ µ ) ) MET / GeV MET / GeV 1 1 2 2 • E ̷ T due to 2 neutrinos • E ̷ T significance: S/B ≈ 15/300k ‣ not from mis-measured lepton p T ‣ not from mis-measured jet p T • m ll < m Z S/B ≈ 5/50 • Σ jets p T < 100 against tt ̅ background

  13. Cuts Optimised for m H =120 - 200 Selection criterion m H = 120 m H = 140 m H = 160 m H = 180 m H = 200 Cut 1 Preselection Trigger, ID, leptons with opposite charge, z V T X < 60 cm, M µµ > 17 GeV p T > 20/10GeV 20/15 25/15 25/15 25/15 Cut 2 Missing trans- 25 < E / T < 70 25 < E / T < 80 30 < E / T < 90 35 < E / T < 100 35 < E / T < 110 verse energy E / T Cut 3 Sig (E / T ) Sig (E / T ) > 5 (for N Jet > 0) Cut 4 M T M T M T M T M T M T min ( l, E / T ) min > 30 min > 30 min > 40 min > 45 min > 45 Cut 5 Invariant mass 17 < M µµ < 60 17 < M µµ < 70 17 < M µµ < 75 17 < M µµ < 85 17 < M µµ < 95 M µµ T + p l � Cut 6 Σ p T = p l T + 60 < Σ p T < 135 70 < Σ p T < 160 80 < Σ p T < 170 90 < Σ p T < 180 90 < Σ p T < 200 E / T Cut 7 H T (scalar sum of H T < 60 H T < 60 H T < 60 H T < 60 H T < 50 p Jet T ) Info Neural Net NN > 0 . 5

  14. Neural Net L=1.2 fb − 1 L=1.2 fb − 1 entries entries entries entries W+jets/ e + e − γ e + e − DØ Run II data data DØ Run II 4 4 4 4 10 10 10 10 Preliminary Preliminary H → WW × 10 → × 160 H WW 10 160 3 3 3 3 10 10 10 10 M ll Σ p T data Z e e Z → e e → QCD → Z e e 2 2 10 10 2 2 10 10 Diboson Diboson 10 10 10 10 γ H WW 10 W+jets/ W+jets/ γ → × Diboson ttbar 160 1 1 1 1 QCD QCD -1 -1 10 10 10 10 -1 -1 L=1.2 fb − 1 ttbar ttbar entries entries 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200 200 50 50 100 100 150 150 200 200 250 250 300 300 ∑ ∑ 10 e + e − M M [GeV] [GeV] p p [GeV] [GeV] inv inv DØ Run II T T L=1.2 fb − 1 3 3 10 entries entries Preliminary e + e − DØ Run II data 4 4 Preliminary 10 10 H → WW × 10 160 2 2 10 10 m H =160 3 3 E ̷ T 10 10 Z → e e NN NN Output 2 2 10 10 x 10 Diboson 10 10 10 10 W+jets/ γ 1 1 QCD 1 1 -1 -1 10 10 ttbar 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200 200 -1 -1 miss miss E E [GeV] [GeV] 10 10 L=1.2 fb − 1 T T entries entries L=1.2 fb − 1 5 5 10 10 e + e − DØ Run II data entries entries e + e − Preliminary DØ Run II data Δϕ ll 4 4 10 10 4 4 10 10 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1 1 H → WW × 10 Preliminary 160 H → WW × 10 NN NN 160 3 3 3 3 10 10 10 10 M Tmin (l,E ̷ T ) Z → e e Z → e e 2 2 10 10 2 2 10 10 Diboson ≈ 30% improvement Diboson 10 10 10 10 W+jets/ γ from NN W+jets/ γ 1 1 1 1 QCD QCD -1 -1 10 10 ttbar 10 10 -1 -1 ttbar 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 4 4 (e,e) (e,e) ∆ ∆ φ φ 0 0 20 20 40 40 60 60 80 80 100 100 120 120 min min M M [GeV] [GeV] T T

  15. Neural Net L=1.2 fb − 1 L=1.2 fb − 1 entries entries entries entries e + e − e + e − DØ Run II data data DØ Run II 4 4 4 4 10 10 10 10 Preliminary Preliminary H → WW × 10 → × 160 H WW 10 160 3 3 3 3 10 10 10 10 M ll Σ p T Z → e e → Z e e 2 2 10 10 2 2 10 10 Diboson Diboson 10 10 10 10 γ W+jets/ W+jets/ γ 1 1 1 1 dphiL1L2 QCD QCD -1 -1 10 10 10 10 -1 -1 L=1.2 fb − 1 ttbar ttbar minMt entries entries 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200 200 50 50 100 100 150 150 200 200 250 250 300 300 ∑ ∑ 10 e + e − M M [GeV] [GeV] p p [GeV] [GeV] inv inv DØ Run II T T L=1.2 fb − 1 3 3 10 entries entries M Preliminary e + e − DØ Run II data 4 4 Preliminary 10 10 H → WW × 10 160 2 2 10 10 dphiMetL2 3 3 E ̷ T 10 10 NN Output Z → e e NN type 2 2 10 10 Diboson dphiMetL1 10 10 10 10 W+jets/ γ 1 1 met QCD 1 1 -1 -1 10 10 ttbar pt2 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 160 160 180 180 200 200 -1 -1 miss miss E E [GeV] [GeV] 10 10 L=1.2 fb − 1 T T entries entries L=1.2 fb − 1 5 5 10 10 e + e − DØ Run II data pt1 entries entries e + e − Preliminary DØ Run II data Δϕ ll 4 4 10 10 4 4 10 10 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1 1 H → WW × 10 Preliminary 160 H → WW × 10 NN NN 160 3 3 3 3 10 10 10 10 M Tmin (l,E ̷ T ) Z → e e Z → e e 2 2 10 10 2 2 10 10 Diboson Diboson 10 10 10 10 W+jets/ γ W+jets/ γ 1 1 1 1 QCD QCD -1 -1 10 10 ttbar 10 10 -1 -1 ttbar 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 4 4 (e,e) (e,e) ∆ ∆ φ φ 0 0 20 20 40 40 60 60 80 80 100 100 120 120 min min M M [GeV] [GeV] T T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend